1 /@fﬁw
\ (" :ll]f‘,,

Vietnamese-German University

COPYRIGHT WARNING

This paper is protected by copyright. You are advised to print or download ONE
COPY of this paper for your own private reference, study and research purposes. You
are prohibited having acts infringing upon copyright as stipulated in Laws and
Regulations of Intellectual Property, including, but not limited to, appropriating,
impersonating, publishing, distributing, modifying, altering, mutilating, distorting,
reproducing, duplicating, displaying, communicating, disseminating, making
derivative work, commercializing and converting to other forms the paper and/or any
part of the paper. The acts could be done in actual life and/or via communication

networks and by digital means without permission of copyright holders.

The users shall acknowledge and strictly respect to the copyright. The recitation must
be reasonable and properly. If the users do not agree to all of these terms, do not use
this paper. The users shall be responsible for legal issues if they make any copyright

infringements. Failure to comply with this warning may expose you to:

e Disciplinary action by the Vietnamese-German University.
e Legal action for copyright infringement.

e Heavy legal penalties and consequences shall be applied by the competent
authorities.

The Vietnamese-German University and the authors reserve all their intellectual

property rights.

RUHR-UNIVERSITAT BOCHUM U—l
JI—I

M l E Vietnamese- German University

Mechanical Engineering

ENHANCING THE ABB ROBOTICS
SCREW-DRIVING SYSTEM'’S EFFICIENCY
THROUGH THE IMRPOVEMENT OF
MECHANICAL INSTALLATION

BACHELOR THESIS

BINH DUONG 2024
SUBMITTED BY: LE QUOC BAO
RUB STUDENT ID: 20267550
VGU STUDENT ID: 14598

SUPERVISOR: PROF. DR. NGUYEN QUOC HUNG
CO-SUPERVISOR: MSC. CHAU KHAC BAO CHUONG

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Mr. Nguyén Minh Toan, who directly guided me
during my internship at ABB Robotics and also proposed the thesis topic as well as provided me
with the equipment needed to complete it. During the working process, problems are inevitable
and sometimes they lead to dead ends. However, thanks to Mr. Toan's advice and dedicated
assistance, I was able to complete this thesis smoothly. Additionally, I would like to thank Mr.
Poan Minh Khang - MEN 2019, who worked directly with me on this thesis. Thanks to him, the

progress and outcomes of the thesis were ensured.

And of course, I cannot forget to express my gratitude to the Vietnamese-German University.
Throughout my studies here, I have been very fortunate to be taught by a dedicated faculty.
Especially, the teachers in the Mechanical Engineering department who have imparted valuable

knowledge to me, enabling me to complete this thesis and further my future career.

And finally, my heartfelt thanks go to my family.They have always been by my side, encouraging
me through difficult times so that I could overcome them and complete this thesis. Without them,

I certainly would not have been able to achieve this.

Sincerely, thank you!

TABLE OF CONTENT

ACKNOWLEDGEMENT ...ttt il
TABLE OF CONTENT ...t i1
LIST OF FIGURES AND TABLES ..ottt v
ABSTRACT ...t bbbt h bt ix
CHAPTER 1. INTRODUCTIONooiiiiiiiiiieiiieeee et 1
1.1 Problem Statement........ccccuiiiiiiiiiiieiii s 1
1.2 OBJECHIVE ..tttk b et h bbbt et R bR 2
1.3 Scope Of IMPIEMENLAIONeeviiiiiiiieii e 2
1.4 LIMIEATION. 1.ttt bbbt bbb 2
1.5 OULINE. ... 3
CHAPTER 2. BACKGROUND STUDYot 4
2.1 Application of teChNOLOZYociviiiiiiiiiiii s 4
2.1.1 Brief history of automation............ccoiiiiiiiiiii e 4
2.1.2 Brief overview and development of RODOLSccccviiiiiiiiiiiee 5
2.1.3 Brief development of ABB RODOTICScoviiiiiiiiiiiiiic e 6
2.2 Communication tECANOLOZYcooiiiiiiieii e 7
2.2.1 Industrial Ethernet and PROFINETcccooiiiiiiiiiiie 7
2.2.2 Ladder Programming [an@Uae...........cceovrreiiiieiiieiie e 10
2.2.3 RAPID LaNQUAZEooviiiiiiiieiiiie e 14
2.3 MAIN NATAWATE ...t bbb e r e nb e s 16
231 IRBTITO0 — 4/0.75 oottt 16
2.3.20mMNIcore E10 ...oiiiiiiiiiiii s 19

B T T S () 3 1 e 1o | ST 22

2.3.4 DSQEC 1030 ...ttt 24
235 PMS83 = ETH ...oiiiiiiiiiiieeee e 28
2.3.6 RODOE tOOL.....cciiiiiiiiiei e 30
2.3.7 Other devices and SCrewing PrinCiple.........couuvverieririiiieiinieiiee e 31
CHAPTER 3. PROGRAMMING ROBOT’S MOVEMENTccoooiiiiiiiieeeeee, 32
3.1 Operating PIINCIPLEeivveeiiiiii et r e nne s 32
3.2 RODOt PrOGIAMIMINGcciuviiiiiiiiieitieaite ettt ettt e e e b e e e e e nne e e beesneeennee e 34
3.2.1 RODOtStUAIO SOTEWATE.eevviiiiiiiicie e 34
3.2.2 Creating robot’s MOVEMENT.........ccuiiiiiieiiiiie i 34
3.3 PLC PrOQIramIMINGcoivieiiiiiiiiieitisiie ittt bbb e 61
CHAPTER 4. EVALUATING AND OPTIMIZINGccccciiiiiiniiiieii i 65
4.1 Evaluating our demo Station’s PIOCESS.......ccviieririiiiiieiiieitieie et 65
4.2 Results before and after the evaluation and implementationcccooovevieniiiicnc e 75
CHAPTER 5. CONCLUSION AND FUTURE WORKccccociiiiiiiiiiece 76
5.1 CONCIUSION ...ttt e st e e e s r e et e e ne e enn e e nne e anreenneeenne e e 76
5.2 FULUIE WOTK ...ttt 76
REFERFENCEoooiiiiiiiii bbb 77

LIST OF FIGURE AND TABLE

Figure 2.1: Operating principle of the PROFINET protocolccccoovviiiiiiiiiiiniiiic e 9
Table 2.1: Differences between IE and PROFINETccccoiiiiiiiiiiiiiceeee e 10
Figure 2.2: The basic structure of @ PLC program.........cccccueiiviiiiiiniiiie i siee e 11
Figure 2.3: AND — 10@IC OPEIAtION. ..c.viiuviiiiiiiiiiiiiesiieie st 13
Figure 2.4: OR — 10ZIC OPEIATIONeeuviiiriiiiiiiiiie sttt 13
Figure 2.5: NAND — 10ZIC OPETATIONeiuvieiiiiiiieiiieeiie ittt re e nreesreennee s 13
Figure 2.6: NOR — 10ZIC OPEIAtION. ..c.viiuviiiiiiiiiiiiiesieeie et 14
Figure 2.7: Timer Pulse (TP) function bIOCKccoueiiiiiiiiiiei e 14
Figure 2.8: Basic programming language of RAPID...........ccccoiiiiiiiiiiiiieee e 15
Figure 2.9: Endurance and maximum loadfor floor mounted configurationsc.ccceeuvennne 16
Figure 2.10: Dimension and working range of IRB1100.............ccoooiiiiiiiiiicee e 17
Figure 2.11: Synchronization marks and each axis’s movement directions of IRB1100 19
Figure 2.12: ABB’s Omnicore-series CONIOlIETs.cviviiiiiiiiiiiiiiiiciecee s 20
Figure 2.13: Omnicore E10 and CONNECtION POTLScouvirieiirieiieiriesiee e 21
Table 2.2: Connection ports of Omnicore E10c.cccooviiiiiiiiiiiii e 21
Figure 2.14: ABB’s Omnicore FlexPendantcccocioiiiiiiiiiie e 22
Figure 2.15: Main parts of FlexPendant.c.ccoooiiiiiiiiiiiii e 23
Figure 2.16: positions of the hard buttons on the Flexpendant.............cccocoveriiiiiniiiiiiecn, 24
Figure 2.17: holding the Flexpendantcccooviiiiiiiiiie e 25
Figure 2.18: Main screen of FlexPendant.............ccooovviiiiiiiiiiiiiiicee e 26
Figure 2.19: DSQEC 1030 ...iiiiiiiiiieiee ettt nb e 27

Figure 2.20: DSQC 1030°S CONNECTION POTLS ...vvvveiiriieiiiiesiiiieesiieessireessireessisesssinesssnesssnesssssessnseeens 28

Figure 2.21: Technical data of PLC PMS83-ETHccccoiiiiiiiiiiiiic e 29
Figure 2.22: Tool’s head deCTIPtiON.c..iiiiiiiiiiiiiiie ettt snee e 30
Figure 2.23: The Zeda automatic screw feeder and the Hios screwdriver head..............ccccoveenne. 31
Figure 3.1: Flow-chart of robot’s MOVEMENLcciiiiiiiiiiiiiiiciee s 33
Figure 3.2: Electric path circuit between robot’s I/O board and PLC I/O bus.........cccccvevviviiinnnnns 36
Figure 3.3: t0010 and new tOO1’S POSTEION.c.vviviiiiiiiieiiiee sttt 37
Figure 3.4: Inputing data for NewW t00]c.oiiiiiiiiiii e 38
Figure 3.5: Tool TCP Definition Wizardccocveieiiiiiiiiieiisieseese s 39
Figure 3.6: Jogging window of FlexPendantcccoceoiiiiiiiiiiiiii e 40
Figure 3.7: Initial interface of RObotStudio..........ccccvviiiiiiiiiiiii 41
Figure 3.8: Configuring IP address for PCicoiiiiiiiiiiee s 42
Figure 3.9: Main programming window of RobotStudioccccceeiiiiiiiiiiiie 42
Figure 3.10: Zone-data eXplanationccoooveiiiiiieiiiesee e 43
Figure 3.11: Direction 0f WODJO........cciiiiiiiiiiiiiiiii s 44
Figure 3.12: Creating SIZNALScocviiiiiiiiiicee e 45
Figure 3.13: All signals Createdccovviiiiiiiiiiii s 46
Figure 3.14: different configurations for a target...........c.ccovviviiiiiiiiinii 47
Figure 3.15: Creating tar@et (1) ...oooveoeieiieieeie et 47
Figure 3.16: Creating target (2)o.cveoieriiieiiiiii i 48
Figure 3.17: Synchronizing targets into controllerccooviiiiiiiiiii e 49
Figure 3.18: Process “t€aching’.......c.cccuiiiiiiiiiiiiiiiiie s 50
Figure 3.19: Finding process ‘teaching’ in FlexPendant............c.cccooviiiiiiiiiiiic e 50

Figure 3.20: Updating POSIEIONciuvvieiieiiiiieeiiieesiiieesiteessibee st sisesssiseessssessisesssseesseeesseessnsneens 51

Figure 3.21: Moving robot to a taught position using FlexPendantc.cccccvvvviiiiiniciiennnn 51
Figure 3.22: process ‘INItIal™oiuiiiiiiiiiiii it saea e 52
FIUIE 3.23: PIOCESS “ZOMEStiiueiiiiiieiriitee ittt ettt b bt b e n e be s 53
Figure 3.24: process THOIMEcooiiiiiiiiiiiii e 54
Figure 3.25: process ‘SCreWCRECKINGcvviiiiiiiiiiiiiiie e 54
Figure 3.26: Workobject SCTeW’s 10CAtION.cuiiiiiiiiiiicii e 55
Figure 3.27: process ‘TPathl’ ... 57
Figure 3.28: Ending of “TPath7”oooiiiiiii s 58
Figure 3.29: process ‘SCreWDITVINGc.oiviiiiiiiiiiiiii e 59
Figure 3.30: PrOCESS “TNAINeoiuiiiiiiiiiieiiie sttt ettt ettt e e sbe e s b e e beeenneenneeanreennneas 60
Figure 3.31: Process “teachpOint”ioiimieiiisneiee et 61
Figure 3.32: ABB automation Builder home SCreen............ccooviiiiiiiiiiiiiciiccc 62
Figure 3.33: Configure ABB’s Automation Buildercc.cooiiiiiiiiiciece e 63
Figure 3.34: Main programming interface of ABB Automation Builder..............ccccoevinininnnnn 64
Figure 4.1: Example on changing speed data using RAPID codec.ccoovviiiiiniiiiiciiiieen, 65
Figure 4.2: First evaluation checklist.........cccooiviiiiiiiiiiii 66
Figure 4.3: MiSaliN@ed SCTEW........cccueiiiiiiiiiiiii e 66
Figure 4.4: Checking screw manuallycccooiiiiiiiiiii e 68
Figure 4.5: Second evaluation Checklistccoviiiiiiiiiiii 69
Figure 4.6: FIXture MmeChaniSImc.cuiiiiiiiiiiieiei e 69
Figure 4.7: Locating holes on workpiece with problems............cccooeiiiiiiiiiiiiii 70
FIGUIE 4.8 StOPPT ...ttt 71

Figure 4.9: Fixture and stopper mechanism after adjustment...........ccccceevveeiiiii e 72

Figure 4.10: Third evaluation Checklistcccoiiiiiiiiiiiii s 73
Figure 4.11: Screw shaking due t0 €CCENIIICILY ..vvvuvviiiviiiiiiiiiiie it 73
Figure 4.12: Designing of the new tool head using SolidWorkscccooeiiiiiiiiiiiiic 74
Figure 4.13: Real product after machining.ccccceiiiiiiiiiiiiic e 75
Figure 4.14: Result before and after OptimiZing ProCESSESuvvirviriiiieiiiiieiriieesireessieee e e sieeens 75

viii

ABSTRACT

Robots are becoming increasingly popular as the world enters the era of Industry 4.0. Thanks to
their versatility, robots can be utilized in a wide variety of life aspects and are even more
extensively employed in the industrial and automation sectors. In conjunction with other
mechanical devices such as conveyor belts and pre-designed tools, robots can significantly
contribute to factory production lines by automating processes that previously required manual

labor.

The purpose of this paper is to explain the process of operating and optimizing the efficiency of
ABB Robotic’s automatic screw driving system using ABB’s industrial robot along with
mechanical components. This project uses the ABB RobotStudio and ABB PLC as the main
software to programming and controlling the robot’s movement, and ABB Panel as the main

human-machine interface.

Chapter 1. INTRODUCTION
1.1 Problem statement

The use of industrial robots to replace manual labor is becoming a highly favored trend in
production lines. Thanks to their precision and processing speed, robots can achieve significantly
higher efficiency than humans when performing such tasks. Until now, robots have already
replaced humans in a wide range of industries, from light to heavy, including tasks such as pick-

and-place, palletizing, 3D printing, assembly, and welding, etc....

While the screw-driving process may seem straightforward, it requires high precision and
perseverance due to the repetitive nature of the task over an extended period. For humans, having
to undergo this process over a long period and continuously can easily lead to fatigue both
physically and mentally, resulting in a decline in effectiveness at work. Thus, The automatic screw
driving system is designed to address this issue. By fully automating the entire process with
industrial robots and conveyor belts, this system will ensure continuous operation and high

performance, regardless of the duration of operation.

However, since the robot in this system is often programmed to move quickly and this can lead to
screwing errors as the small screw positions can be difficult to target accurately. Therefore, Basic
programming is just the first step. A lot of work still needs to be done to ensure that the system

operate smoothly while still meeting the requirements.

1.2 Objectives

In this project, I am aiming to programming and operating the automatic screw-driving system
based on a blueprint that has been calculated and manufactured by ABB Robotics. Throughout the
process I, Doan Minh Khang, my thesis partner, and Mr. Nguyen Minh Toan, an ABB mechanical
engineer, worked together. The objectives are to fully functioning the system and making sure it

meets the requirements of cycle time and efficiency given by ABB Robotics.
1.3 Scope of implementation

e Content 1: Creating the basic movement of the robot.

e Content 2: Monitoring and evaluating current system performance.

e Content 3: Identify and address issues affecting system performance:

e Content 4: Design and manufacture new tool head.

e Content 5: Review and evaluate result of the new tool, finishing the system.

e Content 6: Finish the thesis.
1.4 Limitation

This project focus on programming and operating the industrial robot in the demo screw-driving

station while focusing mostly on how to optimize and increase the efficiency. The station includes:

e ABB IRB 1100 robot and OmniCore controller.

e The screw driving tool set includes: screw feeder, screwdriver, custom-designed
mechanical tool.

e The conveyor system consists of four conveyors, the two conveyors from the left and right
has cylinder to lift up and down.

e Custom-designed workpiece fixture.

e ABB PLC, expansion module, and HMI.

e DSQC 1030 board for PLC and robot communication.

1.5 Outline
Chapter 1: Introduction.

¢ Introducing the paper, stating the reason on why choosing this topic.
e Objectives, research content, limitations, and project layout.

e Machine specifications.
Chapter 2: Background study.

e Background study and researches used to issue the problem, including communications,

software and hardware.
Chapter 3: programming robot’s movement.

e Overview of the system’s operating procedure, flowchart.

e Programming robot based on the it’s procedure.
Chapter 4: Evaluating and optimizing

e Monitor the operating process, identify any errors that occur, and find solutions to address

them.
Chapter 5: Conclusion and future work

e Showing the result, and future aims of the project.

Chapter 2. BACKGROUND STUDY
2.1 Application of technology
2.1.1 Brief history of automation

Automation - the adaption of technology to perform tasks that were previously carried out by
humans. There is no precise point in time when this concept was formed, as in fact it is a gradual
process of development rather than a sudden event. Tracing back through history to even before
the Common Era, automation has been employed when humans used simple tools and machines
like the wheel, pulley, and lever to perform repetitive tasks, These are early examples of
mechanical automation. Until the 18th century, the Industrial Revolution marked the advent of
water - and steam - powered machines, automating many manufacturing processes. Notable
examples include James Hargreaves's spinning jenny and Thomas Newcomen's steam engine.
Moving on to the next century, the development of electricity and the internal combustion engine
further fueled the advancement of automation. The first assembly lines were introduced, leading
to mass production. Moving on to the next century, the development of electricity and the internal
combustion engine further fueled the advancement of automation. This very development has
enabled the formation of assembly lines and mass production. The 20th century witnessed the
advent of computers and electronic devices, ushering in the development of more sophisticated
automation systems. In 1968, the first Programmable Logic Controllers (PLCs) were designed and
used at General Motors (GM) and since then, they have become an indispensable technology in
controlling automation lines. And towards the final decades of the 20th century, robots began to
be widely used in manufacturing, they along with the development of the internet, Al technology,
and IoT, they have opened up a new era for the world, shaping the Fourth Industrial Revolution

and driving the development of intelligent automation.

Automation has made a profound impact on society, the economy and the world. First and foremost,
it helps to improve production efficiency, reduce costs, and enhance product quality. While
automation can effectively replace some human-performed tasks, it also has the potential to
generate new jobs in the fields of design, programming, and operation of automated systems.
Given the current pace of development in the era of Industry 4.0, automation is expected to
continue expanding in the coming years, driven by the emergence of new technologies such as Al,

[oT, and quantum computing. This will lead to even more profound optimistic changes in our world.

4

2.1.2 Brief overview and development of Robots.

Robots have been one of humanity's greatest inventions for nearly 100 years, continuously
evolving to become smarter, more useful, and safer. With advancements in science and technology,
countries and industries worldwide are racing to innovate and manufacture the most advanced
robots for every aspect of life and production. Nowadays, robotic arms are increasingly integrating
advanced technologies such as artificial intelligence, machine learning, and internet connectivity.
And in the future, there will be strong developments in automation capabilities, intelligent
interaction, and close collaboration between humans and robots. The Development trends in the

robotics industry include:

e Integration of Al and Machine Learning: With the advancement of Industry 4.0, robotic
arms increasingly utilize artificial intelligence to automate decision-making processes and
learn from the working environment.

e Collaborative Robots (Cobots): The emergence of collaborative robots capable of working
alongside humans safely and efficiently.

e Wide Applications in Healthcare and Services: Robotic arms are rapidly developing in
fields such as surgery, healthcare; and: customer:service.

e Exploration of Aerospace Technology: Applications include exploration and sampling on
planets with conditions unsuitable for human presence, such as Mars. They also replace

humans in industries dealing with hazardous waste and chemicals.

The first industrial robot was created in the years of 1950s when George Devol and Joseph
Engelberger's company, Unimation, developed the first robotic arm, known as "Unimate."
Unimate was utilized in automobile manufacturing processes. Unimate stands out as one of the
first industrial robots used in manufacturing and was deployed at General Motors' (GM)
automobile plant in the 1960s.[1] This marked a significant milestone in the history of industrial
automation and robotics. It was an industrial robot capable of performing repetitive tasks in the
manufacturing environment. Unimate marked a pivotal moment in the technological advancement
of robotics in industrial production. Specifically, Unimate was used for tasks such as welding,
painting, and handling components in the automotive assembly process. The integration of robots
in manufacturing enhanced productivity, standardized product quality, and reduced risks for

workers in hazardous tasks. Unimate had a profound impact on the manufacturing industry, paving

the way for the widespread development and use of industrial robots in various applications. The
1960s were a crucial period in the history of industrial robot development, as they began to appear
extensively in various industries, including electronics and chemical processing. Although still
relatively rudimentary, this marked a breakthrough in the application of automated technology in
manufacturing. And since then, an increasing number of robots as well as software and principles
have been developed to serve and assist humans, such as: Shakey - The first mobile robot with the
ability to perceive and reason about its surrounding environment [2], The collaborative production
robot (coop-robot) capable of working alongside humans [3],... and many more. And with the
advent of the Fourth Industrial Revolution, robots integrated with artificial intelligence can adapt
to situations independently without the need for human assistance. Additionally, there are many
robots integrated with the Internet of Things (IoT) that can easily acquire information and be

remotely controlled via the internet.
2.1.3 Brief development of ABB robotics.

ABB (Asea Brown Boveri) is a global leader in technology, producing advanced products and
solutions in automation, electrical systems, and industrial and energy sectors. ABB's growth and
development have been an exciting and.challenging journey. ABB began in 1988 when two
electrical companies, ASEA from Sweden and Brown, Boveri & Cie from Switzerland, joined
together. This made a big new technology company based in Zurich, Switzerland. Since then, ABB
has grown fast and is now one of the world's top tech companies. Although ABB didn't originally

focus on robotics but in order to keep up with the changes, ABB Robotics was established.

ABB Robotics has undergone a successful and innovative development process over more than 40
years. Starting from the early steps in the 1970s, focusing on developing industrial robots for the
automotive and ceramics industries, to the emergence of cobots in the 2000s, ABB Robotics has
continuously adapted to market trends and demands. In the new decade, especially from the 2010s
onwards, ABB Robotics has focused on technology innovation, particularly in the fields of
artificial intelligence and machine learning. ABB's intelligent robot systems have been developed
with the ability to learn and interact with the surrounding environment, helping to optimize
performance and flexibility in manufacturing. ABB Robotics' commitment to continuous
innovation and improvement continues to play a crucial role in the development of the automation

industry, delivering value to customers and the community.

2.2 Comunication technology.
2.2.1 Industrial Ethernet and PROFINET
e Industrial Ethernet

Industrial Ethernet involves the use of standard Ethernet technology for communication within
industrial automation environments. It provides a flexible, scalable, and cost-effective networking
platform for connecting control devices, sensors, drives, and other equipment. This communication

protocol carries several advantages such as:

Flexibility: Ethernet can support multiple industrial communication protocols, such as Modbus
TCP/IP, EtherCAT, PROFINET, and EtherNet/IP.

Scalability: Ethernet can easily scale to meet the needs of increasingly complex automation
systems.

Cost-effectiveness: Ethernet utilizes standard network components that are affordable and easy to
install.

Performance: Ethernet can provide high-speed data transmission to meet the demands of stringent
automation applications.

Reliability: Ethernet is a proven networking technology with high reliability.

It can be seen that nowadays, there are plenty of choices regarding communication protocols.
However, selecting the appropriate protocol to use involves various factors such as performance
requirements, network structure, compatibility, and cost. In general, Industrial Ethernet is a robust
and flexible network solution for industrial automation applications. With many advantages such
as flexibility, scalability, cost-effectiveness, performance, and reliability, Industrial Ethernet is

increasingly being widely used in various industries.

PROFINET

One of the most famous communication protocols: PROFINET, short for “Process Field Network”,
is an industrial technical standard for transmitting data over industrial Ethernet. It is designed to
collect data from and control devices in industrial systems, with particular strength in providing
real-time data with tight timing constraints down to 1ms. In simple terms, PROFINET is a
computer network used to connect automation devices together. It enables these devices to
communicate with each other efficiently and reliably, helping improve the performance and
productivity of automation systems. [6] PROFINET iself wields several advantages compared to

other industrial networks such as:

Performance: PROFINET can transmit data at high speeds, reducing latency and improving
response times.

Flexibility: PROFINET can be used with various network topologies, including linear bus, ring,
and star topology.

Scalability: PROFINET can easily scale to meet the needs of increasingly large automation
systems.

Standardization: PROFINET is a standards-based network, supported by various equipment
providers.

Security: PROFINET offers advanced security features to protect data from unauthorized access.

PROFINET operates based on the principle of providing deterministic and high-speed
communication in industrial automation environments. To meet this requirement, PROFINET
utilizes various communication channels such as TCP/IP, Real-Time (RT), Isochronous Real-Time
(IRT), and Time-Sensitive Networking (TSN). For tasks that do not require real-time determinism,
PROFINET uses TCP/IP or UDP/IP communication. However, to ensure determinism and high-
speed for time-critical applications, PROFINET employs RT communication. This communication
directly transmits data from Ethernet Layer 2 to PROFINET through Layer 7, bypassing the
TCP/IP layers to avoid latency. [7]

Real-Time communication VIETTUAN

IT Apps.
HTTP
SNMP

SMTP onfig. data

TCP UDP

IP

Figure 2.1: Operating principle-of the. PROFINET protocol. [7]

PROFINET is widely used across various industries, including automotive manufacturing,
machinery production, shipbuilding, food processing...and many more. In general, PROFINET is
a robust and flexible industrial network that can be used for various purposes. It's an excellent

choice for automation applications that demand high performance, reliability, and security.
e Similarities and differences between.

Regarding similarities, both IE and PROFINET uses Ethernet technology. This brings them several
common benefits. Firstly, since Ethernet utilizes standard network component, they are affordable
and easy to install. Secondly, Ethernet can provide high-speed data transmission to meet the
demanding requirements of automation applications and lastly, Ethernet is a proven networking
technology with high reliability. And alongside their similarities, IE and PROFINET also have

their own distinguishing features, listed at the table below:

Indsutrial Ethernet PROFINET

The popular network communication method | The Industrial Ethernet solution is developed
used for building worldwide networks. by PROFIBUS & PROFINET International
(PI)

Used to connect nodes within a LAN network. | Used for exchanging data between devices and

controllers.

Resides above the physical and data link | Resides on the application layer of the
layers. ISO/OSI model as it's an application.

The transmission speed is slower compared to | Operates at a very high transmission speed
Profinet compared to Ethernet.

Table: Differences between IE and PROFINET. [12]

2.2.2 Ladder programming language

Ladder Logic (also known as ladder diagram or LD/LAD) is a programming language used to
program PLCs (Programmable Logic Controllers). It is a graphical programming language for
PLCs that depicts logical operations with symbolic representations. Ladder logic is created from
logic ladder rungs, forming something resembling a ladder '+ hence the name "Ladder Logic" or
"Ladder Diagram"." It is popular because it's easy to understand, visual, and simulates how
mechanical relays work, helping programmers easily imagine and write control programs for

automation systems.

The rungs in a ladder diagram represent the supply wires of the relay logic circuit. There's a
positive voltage supply rail on the left side and a zero voltage supply rail on the right side. In a
ladder diagram, the logic flow is from the left rail to the right rail. The rungs in a ladder diagram
represent the connections between the components of a relay control circuit. In the ladder diagram,
symbols are used to represent the relay components. The symbols are placed in the rungs to form
a network of logical expressions. When implementing ladder logic programming in a PLC, there
are seven basic parts of the ladder diagram to know. They are the rung, ladder, input, output, logical
expression, address/variable name symbols, and comments. Some of these elements are essential,

and others are supplementary.

10

Rail Rail

Comments for Rung 1

Tag Name Tag Name Tag Name
Address Address Address
aengt —] | || ()

Comments for Rung 2

Tag Name Tag Name Tag Name
Address Address Address

| | | /| 7N
Rung 2
o /| ()

Comments for Rung 3

Tag Name Tag Name Tag Name
Address Address Address
| | | | ()
Rung 3
- || | N
\ J \ J
Y Y
Inputs & Logic Expressions Outputs

Figure 2.2: The basic structure of a PLC program. [11]

e Rungs: The rungs are drawn as horizontal lines connecting the ladder rungs with logical
expressions. In relay circuits, they represent the wires connecting the power source to the
switching components (push buttons, switches, etc.) and relays.

e Inputs: These are external control actions such as a pressed push button or an activated
limit switch. The actual inputs are hardwired to the PLC terminals and are represented in

the ladder diagram by normally open (NO) or normally closed (NC) contact symbols.

11

e Outputs: These are external devices turned on and off such as electric motors or solenoid
valves. The outputs are also hardwired to the PLC terminals and are represented in the
ladder diagram by coil symbols of relay.

e Logical Expressions: Used in combination with inputs and outputs to form desired control
operations.

e Address Symbols & Variable Names: Address symbols describe the structure, defining
addresses in the ladder logic memory for PLC inputs, outputs. Variable names are
descriptions for allocated addresses.

e Comments: Typically displayed at the beginning of each rung and used to describe the
logical expressions and control operations the rung or group of rungs are performing.

Understanding the ladder diagram becomes much easier by using comments.
Symbols (Graphic Symbols) & Meanings in Ladder Logic:
¢ Rung inputs on the left (contacts):

-[I- Normally open (NO) contact: Inittialy in the open state when there is no signal or
activating condition, meaning no current flows through it. When a signal or activating condition is

applied, it switches to the closed state, allowing current to flow through it.

-[/]- Normally closed (NC) contact: Inttially in the close state when there is no signal or
activating condition, meaning current can flow through it. When a signal or activating condition is

applied, it switches to the open state, cutting off the current.
e Rung outputs on the right (coils):
-()- Normally inactive: Intially inactive, active when current flows through its rung.
-(/)- Normaly active: intitally active, inactive when current flows through its rung.

The main principle of ladder language operation is based on standard logic circuits such as AND,
OR, NOT, and their variations such as AND/OR, OR/AND in combine with the rung inputs and
outputs. Signals from the inputs are processed through these logic circuits to generate control
signals at the corresponding outputs. The structure of a ladder program typically follows the 'scan

cycle' principle in automatic control, where ladder rungs are executed in sequence from top to

12

bottom, and from left to right. Each scan cycle, input signals are read, and logic circuits are

processed to determine the control signals at the corresponding outputs.

A few logic operations that can be represented by ladder language include:

000: Input_1: BOOL;
000: Input_2: BOOL;
000! Output_1: BOOL;

M A

lo0o1]

Input_1 Input_2 Qutput_1

— — | ()

Figure 2.3: AND — logic operation.

The AND logic: Presented by Input 1 and Input 2 placed in series on the circuit. In this case, if
only one of these contacts is set active, there will still be no current flowing to the Output 1 or
FALSE state. The Output 1 coil will only be activated if both Input 1 and Input 2 is set active or
TRUE state.

< >

looo1

Input_1 Qutput_1
I [—— \

Input_2

|

Figure 2.4: OR — logic operation.

The OR logic: Presented by Input_1 and Input 2 placed in parallel on the circuit. In this case,
Just one of the two inputs needs to be set active for current to flow through the output or TRUE

state.

Input_1 Output_1
/t 0
Input ;ﬂ
/|

Figure 2.5: NAND — logic operation.

The NAND logic: Also known as the NOT AND gate, the NAND logic gate is the opposite of
the AND logic is presented by the two NC Inputs. In this case, the Output will always be active
or TRUE even if both inputs are inactive or at FALSE state.

13

- >
Input_1 Input_2 Output_1
S/t TS S

Figure 2.6: NOR — logic operation.

E(

The NOR logic: Also known as the NOT OR logic gate, the NOR gate is the opposite of the OR

gate. In this logic, if one of the inputs is set active or TRUE state, the output will be inactive or

FALSE state.

One of the official and widely used PLC programming languages is the Function Block Diagram
(FBD). It is a simple and graphical way to program any functions together in a PLC program, used
to describe the function between input variables and output variables. A function is described as a
set of elementary blocks. Input and output variables are connected to blocks by connection lines.

Some of the commonly used function blocks such as: TIMER, COMPARATOR, COUNTER....

TP

Figure 2.7: Timer Pulse (TP) function block.

Overall, Ladder is an efficient programming language for simple to moderate automation systems.
It is easy to learn, easy to use, and widely supported. However, it has limitations in handling

complex programs and lacks flexibility compared to other languages.
2.2.3 RAPID

In the world of ABB robotics, the RAPID language serves as the primary programming tool. It
bears a resemblance to typical ST (Structured Text) languages and shares close similarities with
C-style programming languages. RAPID (Robot Application Programming Interface) is a high-
level programming language used to control ABB industrial robots. Introduced alongside the S4

control system in 1994 by ABB, RAPID replaced the previously used ARLA programming

14

language. The RAPID language contains embedded functionalities that the robot can use. These
embedded functions allow the robot to move to various locations (for example, "MoveL" is a linear
move to a taught position). Some functions compute mathematical instructions or determine the
robot's sensitivity to external influences. By utilizing the pre-existing functions within the RAPID
library alongside controlling input and output signals, users can program and control the movement
of various ABB robot models, ranging from industrial robots to cobots, delta robots, and SCARA

robots.

Due to its many similarities with the C language, RAPID is quite user-friendly, making it accessible
even to beginners who can quickly familiarize themselves with it. Moreover, with its diverse
library, RAPID offers users plenty of tools to address applications ranging from simple to complex,
thereby saving cycle time and enhancing robot operational productivity. Furthermore, with a large
user community, abundant instructional materials, and supportive tools available, users can easily

seek assistance when needed.

| €\Users\ADMIN\Desktop\THESIS\Backup station |

+

J—'mdvx| -—a +3
13 +
14
15 3 PROC Assem()

16 rInitial;

17 = IF TRUE THEN

18 = FOR i FROM 1 TO 9 DO

19 set dol@_RobotlWorking;

20 Movel Wait_1A, v200, fine, AssemTool\WObj:=Wobja;

21 Movel Offs(Work A{i},8,0,58), v200, fine, AssemTool\WObj:=Wobj®;
22 Movel Work_A{i}, v28, fine, AssemTool\WObj:=Wobj®;

23 PulseDO do@8_lWorkPosition;

24 WaitDI DI_RB_SCREWed,1;

25

26 Movel OFfs(Work_A{i},e,0,88), v200, fine, AssemTool\WObj:=Wobjg;
27 Moved Path_1A, v200, 230, AssemTool\WOb3:=Wobjo;

28 Movel Offs(Des_A{i},0,0,50), v200, fine, AssemTool\WObj:=hobjo;
29 Movel Des_A{i}, v20, fine, AssemTool\WObj:=lobjd;

38 PulseDO do@8_lWorkPosition;

31 WaitDI DI_RE_SCREWed,1;

32

33 Movel Offs(Des_A{i},0,0,80), v200, fine, AssemTool\WObj:=Wobj®;
34 Movel Path_1A, v200, fine, AssemTool;

35 Movel Wait 1A, v200, fine, AssemTool\WObj:=lobjd;

36 pulsedo doll_PathlDone;

37 ENDFOR

38 ENDIF

39

40

41 ENDPROC

Figure 2.8: Basic programming language of RAPID.

15

2.3 Main hardware

2.3.1 IRB1100-4/0.475
e Overview

The IRB 1100 is one of the latest generation 6-axis industrial robots from ABB Robotics. With a
compact design and a payload of up to 4kg, it is suitable for versatile applications and can
communicate with various external systems. This robot arm can be installed in three different
mounting: floor mounted, wall mounted, and it even suspended and there are no limitations on the
angle of each mounting position. For each different mounting position, the robot's components will
experience varying loads during operation, including forces in the XY direction, forces in the Z
direction, as well as bending torque in any direction within the XY plane and the Z plane. With its
emergency stop feature, the IRB 1100 robot will automatically halt its operation when subjected
to forces exceeding the maximum allowable limit, thereby ensuring the safety of users and
prolonging the robot's lifespan. The temperature range for the robot to operate over extended
periods without affecting its lifespan is from 5 to 45 degrees Celsius under the condition where the
maximum ambient humidity does not exceed 95%. And since the IRB1100 used for the screw-

driving system is floor mounted, only the corresponding numbers are considered.

Floor mounted

Force Endurance load (in operation) Maximum load (emergency stop)
Force xy +420 N +710N

Force z +210 £380 N +210 £510 N

Torque xy +180 Nm +330 Nm

Torque z +90 Nm 1140 Nm

Figure 2.9: Endurance and maximum load for floor mounted configurations.[4]
e Dimensions and working range.

The figures below show the dimensions and the working range of the IRB1100 version 0.475.

Numbers are in milimeters.

Dimension:

16

158

11800002606
Working range
Pos 1
8022
| 488.6
[453.4
Pos 7 Pos 3
Pos 5 Pos 2 327
b = Pos 4
Pos 8 N\ 7Jr 141.3
[1262
— l 0
0o~ o 9 © @< < 0
M~ : ? Y
<8 2 & 88 R
< o~ - - <

xx1800002437

Figure 2.10: Dimension and working range of IRB1100.[4]

e (Calibration.

Calibration is a step to standardize the axes of ABB robots. The purpose of this is to establish the
standard coordinate origin of the robot and bring the robot to the zero position, meaning that the
rotation angle of all axes is 0 degrees. The robot cannot start operation until it is calibrated because
at this point, the linear movement, orientation features, as well as teaching new positions are fullly
disabled. Only when calibrated, those features can be used again. The robot will only be able to
move along each axis independently when not calibrated. This is to help users move each axis to

the marked calibration positions called the “Synchronization marks”.

Synchronization marks, IRB 1100

[

xx1800002455

18

Manual movement directions

Figure 2.11: Synchronization marks and each axis s movement directions of IRB1100.[4]

2.3.2 Omnicore E10

e Overview

Omnicore is an advanced line of controllers by ABB specifically designed to control various types
of robots in a variety of applications. This product line offers a range of advanced features and
technologies to optimize performance and flexibility in the manufacturing process. And being an
advanced product line, the Omnicore controller includes some standout features compared to

previous models, a few of them includes:

Safe Collaboration Capability: This allows robots and humans to work together without the need
for traditional safety measures like safety fences.

Easy Integration: Omnicore can easily connect with other systems and devices through standard
networking.

Efficient Data and Program Management: This controller efficiently receives and stores
production programs, optimizing programming and job changes flexibly.

Integrated Artificial Intelligence: By integrating Al, the robot can learn and optimize

performance over time.

19

Omnicore is indeed the brain of the robot, as it not only performs basic functions like starting or
shutting down the robot, controlling the speed with motor,... but also serves as the storage location
for programs uploaded by users and many more. With its advanced features and technologies, it
plays a crucial role in enhancing productivity and flexibility in modern manufacturing

environments.

'Da e

<

E8 o0

Ry TS ﬁ] -8

Figure 2.12: ABB's Omnicore-series controllers.

e Omnicore E10

Omnicore E10 is one of four versions.of this product, line, and it is also the controller used to
operate the IRB1100 of the scew-driving station. With it’s compact design with a width of 445mm,
length of 340mm, and height of 100mm, this version can be easily transported and installed,
without taking up too much space in the station's layout. All connection ports, including the HMI
port, WAN port, LAN port, ports for additional I/O modules, as well as the connection for the
FlexPendant teaching device, are located close to each other on the same side, facilitating
convenient connection and usage. Similar to the IRB1100, the ideal temperature range for

Omnicore operation is from 5 to 45 degrees Celsius. The connection of the controller is as follows:

20

Figure 2.13: Omnicore E10 and connection ports. [5]

Node Description

A Power inlet switch

Power inlet connector

Manipulator signal connector (SMB)

I/0O interface

B
C
D Motor connector
E
F

FlexPendant adaptor connector (HMI)

G,H | WANI1, WAN?2 port

Customer safety interface

Device port

J
K
L Management port
M

External 24 V power inlet connector

Table: Connection ports of Omnicore E10. [5]

Despite the numerous connectivity ports, once installed by ABB Robotics, our primary concern
revolves around the location of the power node 'A' , the management port ‘L’ from which we will
load programs into the robot and the device port ‘K’ that will be used to connect the external board

DSQC 1030.
2.3.3 FlexPendant

The FlexPendant is a handheld device directly connected to the Omnicore controller. It is the
device that users will directly interact with to control ABB robots, run and modify robot’s programs,
and many more. The FlexPendant is made to work continuously in a challenging industrial
environment. Its touch screen is splash-proof, water-and oil-resistant, and simple to clean.
Consisting both the hardware and software, the FlexPendant is a complete computer by itself. It is

connected to the Omnicore controller by an integrated cable and connector.

RobotWare

Figure 2.14: ABB's Omnicore FlexPendant

22

1 | Connector

Touch screen

Emergency stop button

Joystick

USB port and reset button

Three-position enabling device

N N | B W

Thumb button

Figure 2.15: Main parts of FlexPendant. [5]

The joystick (4) will be used to move the robot. This action is call jogging the robot. There are
several different jogging methods such as jogging along each axis of the robot, linear jogging, and
orientation jogging. However, initially, only jogging along the robot's axis is possible. Linear and
orientation jogging can only be used once the robot has been calibrated. The reset button (5) is
pressed if the FlexPendant freezed during usage. Resetting the FlexPendant via the reset button

does not reset the controller's system.

23

Every button in the hard button panel on the right side of the Flexpendant has its own specific
functions. Among the total of 12 buttons, there are 4 buttons that currently have no function

assigned to them. Users can assign functions to them according to their own needs.

Figure 2.16: positions of the hard buttons on the Flexpendant. [5]

For the upper set buttons, if there are more than 1 mechanical unit being controlled by Omnicore,
button number (1) will be used to select between those units. To toggle between jogging linear and
orient, we use button (2). And to toggle between jogging the axis 1-3 or axis 4-6, button (3) will
be used. The button number (4) is to show the operator’s messages. For the lower set buttons,

pressing button (9) will execute the program that is curently loaded in the controller’s system, and

24

button (11) to stop it. Button (10) and (12) will only execute one instruction backward and forward
from the current program’s pointer. The remaining four buttons (5,6,7,8) are the user-defined

buttons.

The three-position enabling device (6) is a button that the user needs to press and hold to start the
robot's motor. Only then can the user begin jogging. This device has two different pressure modes.
If the user applies moderate force to press it, they will enter the motor ON mode. However, if they
press harder or release it completely, it will be in motor OFF mode. The figure below shows how
users can hold the FlexPendant. Since the display screen can be rotate easily, user can both hold

the FlexPendant on their left or right hand.

xx1300000045

Figure 2.17: holding the Flexpendant. [5]

25

The touchscreen of the FlexPendant represents the icons in a very intuitive and understandable
manner. With its sufficiently large design, users can comfortably perform their touchscreen

operations without worrying about being obstructed.

Applications (Q Messages ‘= Eventlog Stopped *

A (B

ABB Robotics o

tn | K =

Code Jog Settings 1/0
Operate Calibrate

vNext2

vNext2

192.168.125.1
1.0442314

xx1800001181
Figure 2.18: Main screen of FlexPendant. [5]

The main interface of the FlexPendant screen can be grouped into three main sections: A, B, and
C as follows. Users can tap on Applications (A) at any time and at any window to return to this
main screen that we will called Home screen. The status bar (B) will allows users to monitor the
current robot’s status, including the operator’s message, event log, motor’s status and more. The

applications (C) that are required for operating the robot system are available in the Home Screen.

26

2.3.4 DSQC 1030

The DSQC 1030 is a basic digital IO module developed by ABB, one of the leading names in the

automation industry. This module is primarily used for controlling and communicating with other

automation devices and systems within a complex network. The device is a part ABB's Scalable

I/O system, designed for industrial robots. This device provides digital inputs and outputs for

industrial control systems. It is used in various automation applications, including industrial robots,

assembly lines, and material handling systems. It boasts advantages such as a compact and sturdy

design, easy installation and use, high anti-jamming level, and support for multiple communication

protocols.

< celmmanis ;
'®=_§ SCIO-EFA
— 7834#2017-

L)
e T T

-!"-"’.m}"‘- e e e "N

Figure 2.19: DSQC 1030

Techical data of the DSQC 1030:

- Number of I/O: 32. (16 input and 16 output)
- Type of signals: Digital. (TRUE/FALSE)

- Operating voltage: 24V DC.

= Current consumption: SA

- Operating temperature: -20°C to +60°C

our station will utilize this DSQC 1030 module to provide I/O for communication between the

robot and the PLC system. The location of connecting ports of the device is shown below:

27

re ey A
|BERORET] =
(B LR b o
BT RS = &
s R RS | -ﬂ.

xx 1600002033

Connector Description

X1l Digital outputs, process power
X2/ Digital inputs

X3 EtherNet

X4 Logic power

X5 EtherNet

Figure 2.20: DSQC 1030s connection ports. [9]
2.3.5PM583 - ETH

The PM583-ETH is a programmable logic controller (PLC) belonging to the AC500 series by ABB.
It's designed to offer robust, flexible, and cost-effective automation solutions for various
applications. It is designed to simplify automation tasks with its powerful 32-bit CPU and ample
IMB program memory. It supports common communication protocols like Ethernet, Modbus,
PROFIBUS, and CAN, ensuring easy integration into various setups. You can easily expand its

capabilities with extra I/O modules. Plus, its user-friendly programming interface, along with the

28

intuitive ABB Automation Builder software, makes it a straightforward choice for automation

needs in different industries. Below are some technical specifications of this device:

Memory Size:

Memory Size User Data:
Memory Size User Program:
Memory Type User Data:

Controller Processing Time:

2048 kB

1024 kB

1024 kB

RAM

0.00005 ms

Number of Digital Configurable0

1/Os:

Degree of Protection:
Rated Voltage (U)):
Supply Voltage:

Ambient Air Temperature:

Figure 2.21: Technical data of PLC PM583-ETH

IP20

24V DC

204 ...288V DC

Operation 0 ... +60 °C
Storage -40 ... +70 °C

29

2.3.6 Robot’s tool

In this station, the robot's tool head is a mechanical product designed and manufactured by ABB
Robotics. The upper part of the tool head has a square piece angled relative to the rest to connect
to the robot's axis 6 through the screw holes in the circular area. The screwing head is mounted on
a bracket placed on a slider, allowing vertical adjustment to change the depth of the screwing head
during screwing operations. The lower part is designed to resemble a duck’s beak, with a small
angled hole to guide the screw down from the screw feeder to the screwdriver head. When the
screwdriver’s head rotated and pressed down, the duck’s beak will be opened, allowing the screw

to be twisted down on the workpiece.

Connection to IRB1100
at axis 6

Screw-driver HIOS

Slider to move the
screw-driver up and
down

The head part
resembling a duck's
mouth

Figure 2.22: Tool’s head decription.

This tool is designed to be large and sturdy to ensure no shifting or vibration during operation and
robot movement, thereby ensuring the station's efficiency. However, due to its large size, we must
ensure the robot's path and angles of rotation to prevent the tool from colliding with other parts

during operation.

30

2.3.7 Other devices and screwing principle.

In addition to the main hardware and software that we will primarily use to program and operate
this screwing station, there are also electrical and mechanical devices surrounding it. These devices
directly contribute to the screwing process: the Zeda MKS2100MV automatic screw feeder, and
the Hios BLFQ-2000 electric screwdriver and air hoses to serve the purpose of supplying and
screwing screws into the workpiece. While the Omron E3Z-T61A-L optical sensor, and the

SY3120-5LZD-C6 solenoid valve will be ultilized by PLC to control the robot’s movement.

Figure 2.23: The Zeda automatic screw feeder and the Hios screwdriver head.

The working principle of the screw-driving process is as follows: When the workpiece is secured
and the robot moves to the screwing position, a signal is sent to the PLC, triggering another signal
to the screw feeder to supply a screw. The screw is then conveyed from the feeder to the screwing
tool head using air pressure. After the screw is in position, another signal will be sent back to the
robot to move into work position, and lastly the electric screwdriver receives a signal to start
pushing the screw down and screwing it into the workpiece. The idea is based on the Vacuum

screwdriver with automatic feed system SEV of WEBER.

31

Chapter 3. PROGRAMMING ROBOT’S MOVEMENT
3.1 Operating principle

According to the proposal from ABB Robotics, the robot must meet the following requirements:
the robot itself has to move to the Home position from any position when the user presses the start
button to run the program. Then, the robot will execute a simple process of moving down and
releasing any excess screws stuck in the tool (if any), then return to the home position. After that,

the screwing process can begin.

The operation process of the screwing process is as follows: The purpose of the two conveyors
with built-in cylinder, one for lifting and one for lowering the workpiece, is to move the workpiece
in a closed loop to simulate the production line in the actual factory, where different workpieces
will be sequentially brought in for screwing. In this demo station, the workpiece will be placed on
the lifting conveyor on the left side. After the robot finished checking any excess screw, the placed
workpiece will be lifted it up until the Omron sensor detects a signal. Then, conveyor system will
move the workpiece toward the work position where there will be another sensor to detect when
the workpiece passed through and the stopper will pull up to stop the piece from continue moving,
along with a fixturing mechanism to pull the workpiece up from the conveyor and in working
position. Once the workpiece is fixed in place, another signal is sent by the PLC to the robot to

indicate that the workpiece is ready for screwing. And then robot will start to work.

The robot’s movement will be as follows: Robot will start to move to the first position. But before
it reaches for the exact position, it will first stop at the offset position. Once the robot is at that
offset location, it will send out a signal to let the PLC knows to make the screw supplier start to
supply one screw to the tool. And when the screw is ready at the tool’s head, the robot will move
from that offset position to the work position, then the tool will start to push and turn the screw
down into the place. Once the screw is in place, robot will move the tool’s head back to the offset
position and then move to the next position, where the process will be repeated until the whole
workpiece is finished. The flow chart below illusrates the working logic of the robot in the auto-

mode.

32

Screw-checking
process

4
Waorkpiece being
loaded into
working pesition

h

Robot moves to

working location

and staris to drive

the screws into
place

F

Mo

All spofs
screwed?

Robot move back
o Home possition,
conveyor moves
finished workpiece
forward

Figure 3.1: Flow-chart of robot's movement

33

3.2 Robot programming
3.2.1 RobotStudio software

To programming and operating ABB’s robots, user will have to familiarize themselves with the
software ABB RobotStudio. RobotStudio is a versatile and powerful tool for building, developing,
and programming industrial robots thanks to its extensive collection of capabilities. Several

features that can be mentioned include:

¢ 3D Robot Simulation: Accurate and realistic simulations are made possible by the ability
to generate intricate 3D models of industrial robots and the environments around them.

e Offline Programming: With RobotStudio, offline programming is made easier, allowing
users to create and improve robot programs without requiring a physical robot. In the
development stage, this helps save time and resources.

e Path Optimization: The software enables users to optimize robot paths for improved
efficiency and cycle time. This helps in enhancing the overall performance of robotic
systems.

e Collision Detection: RobotStudio includes collision detection features, allowing users to
identify and resolve potential collisions in the virtual environment, minimizing the risk of
issues during actual operation.

e Support for Various Robot Models: The software supports a wide range of ABB robot

models, making it suitable for different applications and industries.

In summary, RobotStudio serves as a comprehensive tool for the entire lifecycle of industrial robot
implementation, from design and simulation to programming, testing, and optimization. Its
capabilities contribute to increased efficiency, reduced costs, and improved overall performance

in robotic automation processes.
3.2.2 Creating robot’s movement
e Mapping signal.

Mapping signals is a simple task yet holds significant importance in the operation of our screw-
driving station. Since the robot and PLC uses two different sets of outputs and inputs: Robot uses

DSQC1030 board and PLC uses I/O buses DI524 and DO524. We have to know for example, an

34

input of the robot corresponds to what output of the PLC and vice versa, so that we can put in the
correct signals in our RAPID code and PLC program. Below are the figures of the electric path
circuit of the Input and Output signals between the robot and PLC, note that the only difference is
ABB robotics has replaced the DSQC 652 board into the current DSQC 1030, while all the wiring

and path remains the same.

+PS
| +PSi21/ 24VDC —:
I |
I e ovoc -1 -
______ J
g
+PLC +PLC +PLC +PLC + +PLC +PLC +PLC 8
e T e e T e A s N
I T R N R R O N A (R PO N IR N PO B
[T T T T S T N - T O - S Y N Y RO
BN E L L E L LB L L ELLE LT E L E o &
I O - A - (= T (- A A= (A =
[=T T - T T A - T B A - S A | é I é g E o=
[N~ T A T S A - N B
| N A A " AN - Y A A RS N - |
i [- I T I = A T < B O - |
[R 2 Lo [I T BT
A AN S N JNU S AN S U A S U AN N AN B . AN B . A
5 2 = u 0
8 H 3 2 g 3 g g g
g g g g 8 3] g g
I I B z 2 2 2 <
4 $ $ ¥ 2 ¥ 3 R
e 2 wama o s e s o2 ™ |
DIGITAL INPUT
&3/ OVDC
g
+PLC + +PLC +PLC + +PLC +PLC + s
s S s T s Y s Y s (NN it Y ity Y |
I o O e R R S O A B R
T T - - - - - S - N A O B (O
B L1 E 0 LB LE L LCEQLLELLELLE I ZH
- [- I - T [
(1T - - N - O - O - - O - B £
[N T A O T O S O A IO B O
[T A A I S N S S - S B
| R T T =T B - R - A B
R N o1 [T N
[N A S U A S AN [ANV L ANV N ANV S . N O
% o = 5 = % S 5 g
8 8 3 8 3 3 8 8 S
& P g g & & & P
H S s H E 8 H S
ADS1
e A N N " T A T

DIGITAL INPUT

DIGITAL I/O UNIT
DSQC652

35

36

{8
X =
¢ 3
A
— 3 "
- T
o " i X JOnE
ez £ DOME
Tt
] il
G I
2 s a0 ToXod A0
=
sam o 208 2 R
3 . 1
£ P K » DI524-2- 125/ _th.m“ El
] 1 szr-orov *
- DI24-2:117 s e
Iz d
ZL9T0Y L_ T m e
e e 12%»&?7%3“ H
g 1 bEFIIOF T
! - >osM206 e 3 | | = 0 Eomom——= 4
116]
TS0y 1% z
L 5.
F g
" DIS24-2-23/+cksy o
m IIIIIIII 1 ezraray e
DIS24-2-17 1 494 _ H =
5 a9y 1 Z |a A
B DI5242- 22/ 1P
W m_ \\\\\\\\ 9 = zzrorov LJ ¥
2 DIS24-2-16 £ 4503 “ E g L
£ 9r-9r1o¥ J * St - ________
g L = w . 4_
a & P (- D124 221/ ce g
g 1 Zratoy 3
g - = J
024205 oncrs | = 1 | b
|
sI910v % = 4
= L d E
—t =] g 7 Y
= E me——— —@ DIS242-R0/+cen o
o]] (@] azraray T
e DIs24-214 mepz | -
o #I910¥ 1'% ~ .
=~ R —— | - n 5 ———————
e o o »Dis2a 219/ onced S
= n s !]) 6rr-oroy 1%
< E I IcRe; I — |
= m os2e213/0ncp2 | 1G] 2
— £1-910¥ * [=) m \\\\\\\\
G S N 4 [aa g . 1
= U £ — B DI524-2-118 / +1CE. _“ =l
[ala 3. - sr-ary I
H o~ TTTTTTTT
L zrarov % [,
v
i
x z a3
#:
gagas

7.8/ 24VDC
751 vDC -

25/ 24VDC -

it between robot s 1/0 board and PLC 1/O bus.

wrcu

Figure 3.2: Electric path ¢

89/ 0VDC

From the figures, we can easily find out what signal of the DSQC 1030 board connects to what
signal on the PLC I/O bus. Note that even though the electric circuit above use the numbers from
1 to 16, the mapping for the DSQC 1030 I/O starts from 0 and ends at 15, which means that the
‘RB_OUT1’ will be mapping 0 on the DSQC 1030 output list and so on. The mapping process will
be as follows: the ‘RB_OUT1’ is the output of the robot that corresponds to mapping O on the
DSQC1030, will be connected to the ‘DI524-2-12° of the PLC bus and so on. To be more specific,
later on when I program the RAPID to pulse out a signal called ‘do08 WorkPosition’ which is an
output that I put on mapping 8 of the DSQC1030 board, this is the robot’s output ‘RB_OUT9’ and
connected to the PLC’s input ‘DI524-2-118°, and this output will jump into true in the PLC

program.
e Creating new tool in controller

Each time a different tool is attached to the robot, we need to inform the robot of the exact position
of that tool head. Only then can we prevent errors during movement and avoid the risk of the tool
head colliding with the workpiece and surrounding components. In the default state, the IRB1100
robot will have tool0, and the position of this tool is located at the center of axis 6. And when
connecting the tool to the robot, we want the robot knows the tool’s center is not at the bottom of
the duck’s beak part instead of the original location. The 3d model below shows the position of the

tool0 and the position of where we want the robot to acknowledge as the new tool center.

Figure 3.3: tool0 and new tool's position.

37

In order to do this, I need to use the FlexPendant to teach the robot about the new tool position.
This process is called creating new TCP (Tool Center Point). First, from the main interface of the
FlexPendant I will go into Calibrate. From there, I tap on = and select Tool. This will show me
the list of all tools currently in the controller right now. From then, [tapon = create NewData and
then putting in the name, expected mass and center of gravity. After finishing all the input data, I
can hit the ‘Apply’ for the tool to be shown alongside the tool0. In this station, I named my new

tool’s TCP is ‘MyTool’.

Declaration Value

Value of MyTool : [TRUE,[[0,0,01,[1,0,0,011.[1,[0,0,1],[1,0,0,01,0,0,0]]

Rotation (rotation)

1.0,0,0 hd
Load Data
Mass (kg)

1 kS
Center of gravity (mm)

0,0,1 g
Axes of Momentum (rotation)

1.0,0,0 hd
Inertia {Kgmz)

0,0,0 hd

Figure 3.4: Inputing data for new tool.

The next step is from the list of tools, I tap on “...” From the newly created tool and tap define, this

will lead me into the wizard to define the new TCP.

38

T_ROB1
Tool

+ Create New Data

A4

2ltems Sort: A-Z

ﬂ MyTool Modulel, Global O
E [TRUE,[[0C,0,01,[1,0,0,011,01,10,0,11,[1,0,0,01,0,0,01]
tool0 BASE , Global ¢ Edit
[TRUE,[[0C,0,01,1,0,0,011,[0.001,[0,0,0.001],[1,0,0,01,0,0,01] View Only T
ﬁ Define
D copy
@ Delete
Tool TCP Definition
Define Position D&fine Orientation Result

Select number of points, modify the positions and tap next

Tool : MyTool Position for Point 1
Number of points X 0 mm
3 v Y 0 mm
z 0 mm
Point 1 _ Point 2 _ Rx 0 deg
Not Modified Not Modified
Ry 0 deg
Point 3 Rz 0 deg
Not Modified
RobConf 0,0,0,0
Modify } { Load Positions X
Cancel

Figure 3.5: Tool TCP Definition wizard.

39

To define a new tool TCP, I have to locate three or more different point and one point different in
Z direction. The requirement for the three points are as follows: All three must have the tip of the
duck’s beak, where I want my TCP to be, pointed to an exact position, but they have to have
different orientation. The point different in Z direction can be from any of those three, it’s purpose
is to specify the Z direction of the TCP. Once I have finished creating the tool TCP, it’s positions
will be shown alongside with the tool0. I can double-check if my tool TCP is created correctly or
not by jogging the robot in orient mode with the TCP is the one I’ve just created. Simply goes into
the *Jog’ window from the FlexPendant’s main interface, selecting Jog Mode: Reorient and select
the tool as ‘MyTool’ and start jogging, if the whole robot’s axis move when I jog but the position

of my tool TCP stays still, that means I have created the correct TCP.

Mechanical Unit

9P Reset View

— f?\ ~_] ROB 1 v
)

Coordinate System

Jog Mode

&, nis 123 B, Axis 456

L Linear @ Reorient

Jog Speed: 100%

. J
0% 100%
Position Information v Joystick Movements v Tool
Pasition shown in: Degrees \l’ > V| MyTool v
1 5022° 4 -35.52° 2 1 3 Work Object
2 -23.73° & 84.13° wobj0 v
. ‘ o . 0 Incremental Mode Off
3 28.49 6: 59.00 Load
Ed load0 v
Position Format ait
Homo ? an 0

Figure 3.6: Jogging window of FlexPendant.
e Establish RobotStudio connection.

My main method of programming the basic’s movement is through the software RobotStudio. The
first thing I need to do after opening the software RobotStudio is to connect a LAN wire from my

laptop’s ethernet port toward the Omnicore controller’s MGMT port. This will establish a

40

connection between the software and the robot. Once done that, from the initial window of

RobotStudio I will go into the “Online” tab and click on “One Click Connect”.

Q- 3 RobotStudio o

Connect to a robot controller Recent Controllers

E

@3 O Ok Comeat

New] A Contoter
Create and use controller lists

.. Import Controllers €

el [

¥ Create and work with robot controllers ¢

Lrﬁ Installation Manager 7

(T] h\s(a‘Hanon Manager 6 ¢

System Builder
|) 2 %]

Figure 3.7: Initial interface of RobotStudio

If the connection is established successfully, there will be a small login box asking to type in the
username and password, or choose to log in as a default user. I will choose to log in as a default
user then continue to work on programming. If there is an error box saying that: “No controller
found on management port”, there are two reason for this. First reason is the LAN wire is being
loose from the connecting port, I can simply fix this by making sure the wire is tightly attached.
The second reason is my PC is having a different IP address from the Omnicore controller.
Normally, these controllers are given the IP address of 192.168.125.1, so what I have to do know
is make sure my PC having the address of 192.168.125.x, with x is the different number from 1.
To do this, I go into my ‘Control Panel’, find ‘Network and Internet’ then ‘View network status
and tasks’, and finally ‘Change adapter settings’. From here, double click on Ethernet and find the
TCP/IPv4. Instead of letting it obtain the IP address manually, I will manually input the IP address

as follows:

41

& Network Connections

T /& > Control Panel * Network and Internet > Network Connections

(Qemant Micahla thi Lo doui ni +hi on Rename this ronnectian Channe settinas of this cannertion
@ Ethernet Properties = Internet Pratocol Version 4 (TCP/IPv4) Properties X
..‘
l Networking Authentication Sharing e General :d
’ da|
Connect using: You can get IP settings assigned automatically if your network supports
. this capability. Otherwise, you need to ask your network administrator
@ Reatek PCle GbE Family Controller for the appropriate [P settings.
Configure... () Obtain an IP address automatically
This connection uses the following items: @i
T Client for Microsoft Networks ~) '
F ddress: 192 .168 . 125. 2
B Fie and Printer Sharing for Microsoft Networks [P address
“3aoS Packet Scheduler Subnet mask:
4 Intemet Protocol Version 4 (TCP/IPv4)
[m} 4. Microsoft Network Adapter Multiplexor Protocol Defauit gateway: :]
¥ s PROFINET IO protocol (DCP/LLDP)
2 Microsoft LLDP Protocol Driver v Obtain DNS server address automatically
< > (®) Use the following DNS server addresses:

install... Uninstall Properties Ereferred DNS server:

Description Alternate DNS server: E
Adyanced

Transmission Control Protocol/Intemet Protocol. The default
wide area network protocol that provides communication

across diverse interconnected networks. [Jvalidate settings upon exit

5] o

oK " Cancel

Figure 3.8: Configuring IP address for PC.

Clicking OK after this and click “One Click/ Connect” on RobotStudio again, this time it should

be good to go. Once I'm in the below window, that means the RobotStudio software is ready to

work.
BE9-~-4- 5) Project50 - RobotStudio - a
“ jme Modeing w0 | asdins 2@
n a BRaBo o —Aa@@BET. B R O@ 06 3 0 ¢
_ Outining sgpst O [sy Compee ey | Moy sotod st 0P (G g G| BAD
pern e I P Contrter e Do e
e TRl e | oot ttons]
= Colapsa all TROBI Modulel x| A+
Gunension 1] Mool meduled +
+ B Comoten z| PERS toulioto MyTaol += [TRUE, [[-154.175,28,259. 8551, 5.95155, -8.144973,0. 267005, 8.040esed 11, [1, 8,8,11, 1,8,8,81,8,8,811; -
 Hove 3
1§ Corfiguraton a
i Eveiton s
R 1osysen s
4 O rPD 7
+ ga1.RoB1 8 .
= 5 1 cansert dasceiption here>
3 com e 1 dethors dnan
3] i noo
e 13 10
1
15
1
1
i
@
W1 Procedure main
a
21 This is the entry point of your progran
PO
[T —
25 = PROC main()
2 11dd your code. here
7 | e
R —
Coriove s | Gt | 60 i | et i | DD Co | A g | s g | e
Corrler st 11
B Typeheretosearch g @ @ » GH A B ¥ R ~ @ € o\ e ;jf;;’;‘ B

Figure 3.9: Main programming window of RobotStudio.

42

e Programming language

The operating principle of the program in RobotStudio is quite simple and accessible. Robot’s
movements, signals pulsing and many more can be break down into different processes. Each
process can represent one or more fucntions that depends on the user and can be name however
we want. Robot will only proceed to run what lies in the ‘main’ process part of the RAPID. A

general structure of a process is as follows:
rMove

HomePosition mytool\WOb;j

The sample code above presents a process with the name of ‘rMove’, starting from the ‘PROC’ to
annouce the start and naming of a new process, and ended at ‘ENDPROC’. The content of this
process is to perform an action of moving the robot’s tool TCP ‘MyTool’ to the position defined
with the name ‘HomePosition’. V200 is speed data and indicates that the speed of this move will
be 200mm/s, and fine is the zone data. This data can have different values such as z0, z5, z10, z
20,... and will represent of how smooth the robot will move from one point to another. The lower
the value is, the closer the TCP has to be from the actual programmed position before it can
continue to move toward another position while the higher value allows robot to fly-by that

position.

A position can be terminated either in the form of a stop point or a fly-by point.
A stop paint means that the robot and additional axes must reach the specified position (stand still) befare program execution continues with the next instruction. It is also possible to define stop points other than the predefined Zine. The stop
criteria, that tells if the robot is considered to have reached the point, can be manipulated using the stoppointdata.
A fly-by point means that the programmed position is never attained. Instead, the direction of motion is changed before the position is reached. Two different zones (ranges) can be defined for each position:
#® The position zone for the TCP path.
® The reorientation and additional axis zone.

vd

) T % Programmed
Posit e
osition zene /- /L ™ A posttion

Start of reorientation
towards next position \

Start of TCP corner path . Re tati d
~ — Reorientation an

additional axis zone

Figure 3.10: Zone-data explanation.

43

Wobjdata is used to describe the work object that the robot welds, processes, moves within, etc.
And in the screwing station, we use the default wobj0. This work object takes the center of the

base of IRB1100 as the 0,0,0 point and has the directions as follows:

f,
7 | =
i~
k Y \-/\

Figure 3.11: Direction of wobj0.

Another important thing that I have to take into consideration is the Input and Output signals. This
will plays a crucial role in the communication between the robot and PLC. Using signals will have
the PLC controlling the current action of the robot, and vice versa, so that the two will be able to
work in union. And thankfully, the DSQC1030 is here for us to solve this problem. With up to 16
inputs and 16 outputs, we have plenty of signals to work with. To create signal, I click on the I/O

system which can be found on the left side of the screen, and choose ‘Signal’ from the categories.

44

Kl o °
D 7 A (‘ “OLIO/MA « 7 owine - | S5 EEEENE =R .u L]
= AOODD AN - - =] u
paste select ol o ie- @A Bt B 4RO 0 size | Color | Color Edit Edt with
- - . : N et - 1 2 calors Paint 30
Cliphoard Image Taols Shapes Colors
[Contratter | Files | 5 % || Projectssiiewt | 1100-501083 (Station) x
2 Collapses | Configuration - /O System -
Currant Stan Type Name Type of Signa| Assigned to Devics SignalIdentiication Label | Devics Mapping ~ Catsgory AccessLevel Defoult Value Fiter Time Passive (ms) Filter Time Active (ms)
4 K1 100501083 Aocass Level 404_RE_EMSResst Digial input | Local 101 D5QC1030 l Defaun [} [}]
[HoME CC-Link IE Field Basic Internal Device _8i11_MoveHome Digital input | Loes_I01 05QC1030 i1 Defaun] 0 0
4 Conbgurton CC-Link IE Field Basic Network 408_SystemReady Digital input | Local_101 DSQC1030 3 Default i []
L e Commection #08_RB_PrepareScrew Digitel Input Loesl_I01 DSQCIN30 B Defoult 0 0 0
21 Communication _ 606_RB_Mode Digital input | Local_I01 05QC1030 3 Defaun [} 0 0
2 Conroller Device Trusi Level @10_ConvStopped Oigital input | Loes_I01 05QC1030 o Defsun 0 0 0
EtherNet/IP Command #03_RB_StariAlMain Digitel Input | Loeal_IO1 DSQC1030 B Default 0 0 0
1 V0 Sysiem EtherNet!IP Devics 405_MotorOFF Digital nput | Local 107 DSQC1030 E Default 0 0 (]
1 Man-Machine Communication EthemeyIP |0 Connection Local JO1_0_DI13 Digénlinput || Lacal 101 DSQC1030 12 Default 0 0 0
1 Motion EtherhioyIP Network Local_I01_0_Dil4 Oigtal input | Local_i01 05QC1030 i3 Defaun [}] []
1 Proc Swgnal Local_I01_0_DOG Digital Output | | Local 10T DSQC1030 b Default [NiA NiA
Signal Safe Level DI_RB_SCREWED Digitol Input | Local 101 DSQC1030 14 Detault 0 0 []
] EventLog 401_RB_MotoON Digital Input | Local_I01 DSQC1030 i Defoult [}] 0 []
B 10 System d00_RE_Stop Digital input | Local_I01 DSQC1030 Defout 0 0 0
O rapio 302_RD_Start Oigital input | Local_I01 0SQC1030 3 Defout 0 0 []
RB_SCREWPASS Digital Input Local_IO1 DSQC1030 15 Defoult 0 0 0
Digital input | Local_I01 D5QC1030 u Defout 0 0 0
Digital Output | | Local_IO1 DSQC1030 i Defout [} Nia Ni&
Digital Qutput | Local_I01 DSQC1030 15 Defoult 0 NiA NiA
Digital Output | Local 101 DSQC1030 14 Default o NiA NiA
do13_MotorOFF Digitel Output | Local 101 D5QC1030 13 Defout 0 HiA NiA
do12_MotorON Digital Output | Local_IO1 DSQC10m0 12 Defaut [} Nia Ni&
dal1_Path1Done Digitel Output | Local 101 D5QC1030 i Defout 0 HiA NiA
o09_ProcDane Digital Output | Local_IO1 05QC1030 b Defaut [} NiA Ni&
010_RobofWarking Digital Output | Local_I01 DSQc1030 o Defout 0 HiA A
doll7_HoverPosition Digital Output | Local 101 DSQC1030 | Default o NiA NiA
Digital Output | Local_IO1 DSQC1030 3 Default 0 NiA NiA
Digital Output | Local_IO1 05QC1030 4 Defaut [} NiA Ni&
Digital Output | Loesl_I01 0SQC1030 o Defaun] NiA NiA
Digital Output | Local 101 DSQC1030 4 Default o NiA NiA
Digital Output | Local_I01 DsSQC1030 k Default 0 NiA NiA
Digital Output | Local_IO1 D5QC1030 Defaun [] NiA NiA
Digite T =] 0 0
D 4 o [[}
D 2 0 0 o
D 1 [] [] 0
Dy 3 0 0 (]
Digy] o 0

Figure 3.12: Creating signals.

Signals coming from the DSQC 1030 will be displayed with the ‘Local 101 in their ‘Assigned to
Device’ and ‘DSQC 1030’ in their identification Label. And I will modify their into my desired
names. To modify, right click on the correspond signal I want to change and changing their name
and choose ‘Edit’, a window will pop out for me to type in the name. The figure below shows all

the signals that will be used in my program.

45

Modeling simulation

&
Access
Controll Files v x
2 Collapse all .
Currert Stafion
+ 1 1100501063
[HomE

4§ Configuration

[Communication
[Controller
] VO System
3 Man-Machine Communication
1 Motion
e

{] EventLog

& 10 System

= RAPID

1100-501083 (Station) x |

Configuration - I/0 System x

Type Name
Access Level dil7_RB_ScrewDroped
CC-Link IE Fisld Basic Interma| Devics 4015_Dropped
CC-Link IE Field Basic Network dal4_Drop
Cross Connection datd_MowrOFF
do12_MotorON

Device Trust Lovel
EtherNet1P Command
EtherNetIP Dewice:
Ethemet/IP IO Connection
EtherNet1P Netwark
Signal

Signal Safs Level

dal1_PathiDane
dal0_RabatWarking
do09_PrecDone
da08_WarkPosdion
407_HaverPostion
da06_HomePasition
do04_R8_Erior
4003_RE_EMS
DI_RB_SCREWED
4002_RB_TaskRunning
400_RE_Stop
i1_RB_MatoON
402_RE_Start
4i03_RB_StartAthlain
Gi04_RE_EMSReset
Gi05_MotorOFF
4i06_RB_Made
4000_RE_MotoON
4i08_RB_PropareSciew
4i03_SystemReady
110_ComvStopped
di11_Mavetome
dol1_RE_ScrewSSP
Local_101_0_DI13
DI_RB_SCREWPASS
Local 101_0_Dit4
Local101_0_DOG
DO_Zonel_AS
DO_pHome_SD
DO_pHome_AS
DO_firstScan
LocalEmergancySiopStatus

”

Type of Sigal
Digita Ingut
Digital Cutput
Digital Output
Digitsl Output
Digital Cutput
Digitsl Cutput
Digital Output
Digitsl Output

Dxgital Qutput
Digitsl Ingut
Digitol Output
Digasi ingut
Dagisl Input
Digtol Ingut
Digita Input
Dagisl Ingut
Dagial Input
Digitel Input
Digitol Output
Dagisl Input
Dagit Input
Digita Input
Digitol Ingut
Digitl Output
Dxgitol Ingut
Digital Input
Digital Ingut
Digisl Output
Digital Output
Digital Dulput
Digitsl Output
Digisl Output
Digial Input
Dxgital Output

Project55 - RobotStudio

@ W

Compare

Assigned to Devics
Local 101
Lacal 101
Lacal 101
Local 101
Lacal 01
Lacal 101
Lacal 01
Local 101
Lacal 101
Local 101
Local 101
Local 101
Local_101
Local 101
Local 101
Local_101
Local_101
Local 101
Local 101
Local_101
Local 101
Local 101
Local 101
Local_101
Local 101
Local 101
Lacal 101
Lacal 101
Local 101
Lacal 101
Lacal 101
Local 101

SC_Feedback Dev

Cantraller

‘Signal Identification Label
DSQC103
DSQC103
DSQC1030
DSCC 1030
DSQC103
DSQC1030
DSCC1030
DSCC1030
DSQC103n
DSQC1030
DSCC1030
DSCC1030
DSQC1030
DSGC1030
DSQC1030
DSGC1030
DSQC1030
DSQCT030
DSQCI030
DSQC1030
DSQC1030
DSQC1030
DSQC1030
DSQC1030
DSQC1030
DSQCI030
DSQC1030
DSCC1030
DSQC1030
DSQC103
DSQC1030
DSCC103

Devica Mapging

Test and Debug

Access Level
Defauit
Defauit
Default
Defauit
Defauit
Default
Default
Defauit
Default
Default
Defauit
Defauit
Defauit
Defoult
Default
Default
Defauit
Dafault
Default
Defauit
Defauit
Default
Default
Defauit
Defauit
Default
Default
Default
Defauit
Defauit
Default
Defauit
ReadOnly
ReadOnly
ReadOnly
Defauit
SC_Feedback ReadOnly

Category

Path Editor

Breskpoint
Defoult Vale Filler Tima Passive {ms)

clcccoccocococococcococococcoccoc0c000c00000 0000

cozocoozooooooo
= =

—a+:

Filler Time Active (ms)

NA

coozooocozooocaooo
= =

Corirolr Satus | Output | RAPID Waich | Simulsbon Watch | RAPID Call Stack | RAPID Breakponts | search Resuls |

5 %

Controller status: 1/1

B ° Type heretosearch

@ w =

Gl & ~08 %

Figure 3.13: All signals created.

A~ 7 M @) enG

[

The position values in the RobotStudio is called ‘robtarget’, short for robot targets. And the basic

syntax to create a robtarget variable in/RobotStudio-is:

CONST robtarget pl :==[[x,y,z], [q1, 92, 93, q4], [cfl, cf2, cf3, cf4], [eax_a,eax b,eax c,...,eax f] |;

The three x, y and z will be the coordinate of the target in the xyz plane accordingly, while the q1

to g4 will present it’s rotation angle through the quaterion angles, and the cf1 to cf4 will represents

how the rest of the robot’s axes will behave when the tool’s TCP moved to that target. For example

in the figure below, the axis 4 of the robot can either have the rotation of 0 degree or 180 degree

depends on the configuration selected.

46

Configurations: Target_10 Configurations; Target_10

Configurations Configurations
Cfg1(0.0.0.0) Cfg1(0.0.0.0)

¥ Cig2 (-1.0-1.0) Cfg2 (-1.0-1.0)
Cig3 (-12.1.1) ®icfg3(-1.21.1)
Cfg4 (1.2-16) Cfg4 (1.2-16)
Cfg5 (1.0.1.7) Cfg5(1.0.1.7)

[Include Tums [Include Tums

T JointValues Joint Values
Previous Current Previous Current
J1:-2241 J1:-2241
J2: 499 J2:-4.99
J3: 25.37 J3:2537
J4: 0.00 J4:180.00
J5: 69.62 J5: -69.62
J6:-22.41 J6: 157.59
10- Cfg: (-1.2.1.1)
Cfg: (-1.0.-1.0)

sony || Gose

Figure 3.14: different configurations for a target

Though usually, I will not create these target by typing the syntax in like this. Instead, I will just
create a random target using the ‘Target’ function in RobotStudio by my PC first. And then, I will
use the FlexPendant to teach the robot where I want my target to be, and all the numbers will be

updated into the syntax automatically.

Bd9-~-Q- 5 Project50 - RobotStudio - a] X
D vome | Moseing smustion Comvoler RwD Addins - @
@ @ 5 G L (@8 B Beruon Tk TabbiE@stian e @ - Ggrman Uniyegs | [ve view
e @R IR Teach Instructi Workobject wobj0' - & Show/Hide =
ABB Import | _Virtual Import Frame Path Other £ 2 Synchronize 5 . Graphics
Library* Library® | Controller” | Georetry” | * =" 5 1D View Robot at Target Tool MyNewTool & e TUE BB TS | ¢ prame size -
L Build Station Croate Torget Settings Controller Freehand Graphics
| Layout [pathsamargets | Tags | = x| ® Create & new target < || Documents | s x
¥ Expand al Staton @ Search () Browse
ol s Seintiongat ©) ® O Logations .
3 Pojec Specify the positions of the robot axes. [Soorch N
+ § RB1100.4.47_02 Create Targets on Edge
4 MyNewTool Create targets along edges of surfaces.
t; Frame_1
S

Figure 3.15: Creating target ().

47

The ‘Target’ function can easily be spotted from the Home tab. Click on that and choose ‘Create
Target’, a window will pop out and I can click on everywhere on the 3D view window, the location

will be updated into that window and when I hit create, the target will be created.

Bd2-0-Q- s Projects0 - Robotstudio - o X

¥ @

ABB Import

Library * Library*

T_ROB1(C

‘World

ze Q5 3 . Graphi

TRE Do - ot
Freehand

Bui

| Creste Target | | Documents | = x
(O staton @ Search () Browse Locations .
Search vip ¥

Reference
World

(] Align Targetwith closest Part
Positon (mm)

;23 Suss fooo
Onentation (deg)
000 <l

Ponts Add

% Expand 2l

3 Projectsd
[Swation Elements
€ Contollert

%
I} Selection Levil ~ Snap Mode * UCS: Station |[278.23 14557 000 | Movel = * 11000 7100 MyNewTool © \WObs=woti0 * EERUBIRESRISII

Figure 3.16: Creating target (2)

The next step is to create a reference path or a process so I can upload the target on it and then load
it into the controller, since only until then the RAPID will have the information of the target. To
do this, I click on ‘Path’ right next to ‘Target’ and choose ‘New Path’. A path will then be created
with the default name of ‘Path 10°. After that, I simply drag the newly created target into the path,
and finally using Synchronize to update the target into RAPID.

48

Bd9-~-- s Projects0 - RobotStudio = o X

D fome | Modeing smuation Comvoler RaPD Addins | Moddy - @
P % r) Teach Target Task T_ROB1(Controller1) = L=] 8 New View
- 4 3 = Tty g World | @D
ABB «gﬂ vf‘ ,ﬂ,. ,F ,@‘ ‘f.: O‘ﬁh B Teach Instruction Workobject | wobj0 s ‘r;ﬁ . = Grapmics | @ Show/Hide -
Library~ Libtary~ | Controller* | Geometry* | ¢ L] ' | B View Robot at Target _Toal MyNewTool | Symchronze ¢ Qi PhOve) R- SRS |\ g cie -
Build Station T Jettings Controller Freehand Graphics
[tayout | PathsacTargets | Tags = x|[Projectst @ create s new path wihout instructions, < || Documents | Six
2 Collapse all | AutoPath O Staton @ Search (O Browse Locations .
5 Projscstt | G Create pat rom the edges of geometry fssarch e v
[Station Elements o ‘
4 € Connoller1
4 4 T_ROBI
* [Tooldata
4 (@ Workobjects & Targets
4 T wobjo
4 g wobj0_of
@ Target_10
4 [Paths & Procedures
2] Path_10
=5
T Seection Level ~ Sap Mode * | ics:sttion (27823 14557 000 | Movel. * = vioao * 100 * wyNewrool * \wobz=wotio * R
Bd9-~-3- 3 ProjectS0 - RobotStudio
Home | Modeling Simulation Controller RAPD Add-ins
ﬂ Zﬂ 5‘3 a l¢ @ @,g ﬁ K3 Teach Target Task T_ROB1(Controller1) = (=] Worid - @ [New View
P | e S E e B i B8 Teach Instruction Workobject wobj0 | éh Graphics | 2 Show/Hide -
mper irtua m rame Target Path Other mehronize s - | Graphi
Library~ Libtary~ | Controller~ | Geometry= - |0 =" =" | [View Robot at Target | Tool MyNewTool o|ynheonize e QU Booned R | OO | £rame size -
Build Station Path Programming & ____ Settings o Contrper Freehand Graphics
[[Gayout | PathsaTargets | Tags | 3 x] x| s
2 Col
| Synchronize to RAPID
3 Projectso
» [l Siafoq Elaao Name : Synchvonze. ~ Module Lacal: Storage cigss Inine
4 €3 Convollert 4 B Controller1 ()
4
#al T_ROB1 4 g T_ROB1 O}
(3 Tooldata - / 4 [Paths & Targets)
4 (4@ Work |
“1:' ob;cts argets b ¢ PatLI0 2 T
4 1 wobj
4 tgioitel 4 (i@ ToolData]
= & MyNewTool) CalibData + PERS

Target_
@ Targ | {8 WorkObject O
4 [J] Paths & Procedurep Drag target ifjto path
4 . Path_10 \
&* Movel Targot_10

RAPID

o | o

/ Synchronizing data into
7

Figure 3.17: Synchronizing targets into controller

e Teaching processes and controlling targets

Once finished all the step, the RAPID program will now has the target data. From now on,
whenever I want to create a new target, | can just copy the variable and paste it again while giving
it a new name. I will also put all of the created targets into a seperated process called ‘Teaching’.

For example like this:

49

- PROC teaching()
Movel Target 10,v1886,z188,MyNewTool\WObj:=wobj@;
EMDPROC

Figure 3.18: Process ‘teaching’.

Even though this process will contains several moving function only, it’s purpose will not be
moving robot but instead for me to teach the position of different targets I put in here. To teach a
new target, first [jog the robot’s TCP to wherever [want the target is at. Then from the FlexPendant,

I go into ‘Code’ and find the process ‘Teaching’. For this example, the process ‘teaching’ is in

Module 1, which is a default name of a module in RobotStudio.

Code gram D: Jog | Sattin gs Calib MyTool
CalibData
Modulel
Mol
S

Cpen Module (Read-Only)

é
B
E

Figure 3.19: Finding process ‘teaching’in FlexPendant

teaching

Once the tool’s TCP is in my desired position, I update it by tapping on the target’s name in the
move syntax, and tap on ‘Update Position’. I can always check the variable in the RAPID code to

see if the position is updated or not.

50

Module

= teaching X +

28 PROC teaching() Navigate

29 MovelL Target_10, v1e00, z100, MyTi B2 Declaration >

30 ENDPROC

31 Routines >
Instructions
4 Add Instruction >
¢ Modify Instruction >
Edit and Debug
& Edit >
] Debug >
Other

@, Update Position

v Check Program

Figure 3.20: Updating position.

According to the programming standard of ABB Robotics, the ‘Teaching’ process is a very
important one that needs to be there for user to control their robot targets. Since there would be a
lot of targets that will be made as the programming goes, scatterted in many different modules and
sub-processes and it might take a lot of time just'to locate where a position is in the program. So,

grouping all the targets into one process is an efficient way to control.

To move the robot to a taught position, I tap on ‘Debug’ and find ‘Go To Position’ under ‘Move
Robot’ section. Then while keeping the motor on by holding down the three-point enabling device,

I tap and hold the ‘Press and hold to Go To’ to make the robot moves to that position.

D @ P

L

» Movel Target_10, v1@ea, z18@, MyT! =
:
:

ENDPROC Ieve Program Pointer

PP to Main

PP to Cursor 1 O e S
PP to Routine Go to position

Paint: Target 10 |
Toal: MyTool

Work Object: wobjl

Move Robot Cancel Press and hoid 1o Go To |

Go To Pasition - —

Others

Move Cursor

Figure 3.21: Moving robot to a taught position using FlexPendant.

51

e Other processes.

Once everything is ready, it’s time for me to start programming the robot’s movement. To ensure
the program is completely refresh everytime, I have to make the robot to move back to it’s
‘HomePosition’, as well as reseting every signals. This calls for an ‘Initial’ process. In this ‘Initial’
process, I will make sure the two signals: ‘do10 robotworking’ and ‘do11 Path1Done’ is set back
to false as well as creating different possible paths for the robot to move it’s TCP back to
‘HomePosition’. The ‘HomePosition’ can be understood as the resting position of the robot before

shutting down the power and it also the position at the beginning of the screwing process.

7 = PROC rInitial()

8 - IF DO_firstScan = @ THEN
9 Zones;

18 SETDO DO_firstScan,1;

11 ENDIF

12 rhome;

13 reset dol@_robotworking;
14 reset doll_ PathlDone;

15 ENDPROC

Figure 3.22: process ‘Initial’.

The zone process is to create different world zones. For each zone, there will be another path to
move the robot’s TCP back to HomePosition. This is to simulate the real-life scenario when there
might be objects blocking the path in each zone, so if [use the function to move the TCP back to
Home by default, it could has some problem like the tool will collide with some object, that’s why
I have to create zones and different paths. And since the ‘zones’ process can only run one time for
the zones to be established, the IF function is there to make sure the process will not run multiple

time since it would cause error.

To create zones, first I need to create some variables. These variables will each store a position in
it and will be used to make a zone later on. In RobotStudio, there are two different kind of zones:
Sphere and box, and this program will take into account both of them. Sphere zone is created by
choosing a position as the center of the sphere and choosing a radius, the zone will then be created
with those two information. Box zone on the other hand, is formed by two position indicated Two
diagonally opposite corners of a rectangular box. They are presented in the RAPID language as

follows: First, I create the variable to store the position in. In this station, I divided the space in a

52

total of three zones, two box-shaped and one sphere. The two box-shaped zones will be on the

front left and right of the robot, while the sphere will obviously be around the ‘HomePosition’.

VAR pos pHomepos_SD:=[9,8,8];
VAR wzstationary HomeData_SD;
VAR shapedata HomeZoneShapel SD;

— Variables for create sphere.

VAR shapedata Zonel SD;

VAR wzstationary ZonelData_SD;

CONST pos Zonel_SD_Low:=[417.73,50.51,95.29]; — Variables for create box zone 1.
CONST pos Zonel_SD_High:=[218.77,83.20,132.93];

VAR shapedata Zone2_SD;

VAR wzstationary Zone2Data SD; .
CONST pos Zone2 SD Low:=[611.89,43.58,-21.42]; — Variables for create box zone 2.

CONST pos Zone2_SD_High:=[520.45,-61.19,124.65];

Now that the variables is ready, I will start making the zones. For the sphere zones around the

HomePosition, the syntax is as follows:

pHomepos_SD:=HomePosition.trans;
WZSphDefYInside,HomeZoneShapel SD,pHomepos SD,1860;
WZD0Set\stat ,HomeData SDY\Inside,HomeZoneShapel SD,D0_pHome SD,1;

The first line is to transfer the position of my ‘HomePosition’ into the ‘pHomepos_SD’ variable,
which means the ‘pHomepos_SD’ now will have the exact same position as my ‘HomePosition’.
The second line is to define a sphere zone with the name: ‘HomeZoneShapel SD’ which takes the
‘pHomepos SD’ as the center and the radius up to 100mm from that center. The last line means
that whenever the TCP moves into that zone, it will set the signal ‘DO _pHome SD’ to 1, else it
will stay as zero. Simliar to this, I create two more rectangular zones and put them in a process as

follows:

-] PROC Zones()
pHomepos_SD:=HomePosition.trans;
WZSphDef\Inside,HomeZoneShapel SD,pHomepos SD,1688;
WZD0OSet\stat,HomeData_SD\Inside,HomeZoneShapel SD,DO _pHome SD,1;
1Zonel
WZBoxDef\Inside,Zonel SD,Zonel SD High,Zonel SD Low;
WZDOSet\stat,ZonelData SD\Inside,Zonel SD,D0 Zonel SD,1;
1Zone2
WZBoxDef\Inside,Zone2 SD,Zone2 SD High,Zone2 SD Low;
WZDOSet\stat,Zone2Data_SD\Inside,Zone2 SD,D0 Zone2 SD,1;

endproc

Figure 3.23: process ‘Zones’

53

Next up, the process ‘tHome’ will indicates how the robot will move back into the ‘HomePosition’.
In this process, I use the IF function which is pretty straightforward. The robot will have three
different ways to move back to the ‘HomePosition’ depending on what signal is being active. And

that concludes my ‘Initial’ process of the program.

PROC rHome()
IF true THEN
ISrewDriving
IF DO _pHome SD=1 THEN
Movel HomePosition, v208, fine, mytool\WObj:=Wobjé;
ELSEIF DO_Zonel_SD=1 THEN
Movel pZonel SD, w288, fine, mytool\WObj:=Wobjg;
Movel HomePosition, v208, fine, mytool\WObj:=Wobjé;
ELSEIF DO_Zone2_SD=1 THEN
Movel pDrop, v2088, fine, mytool\WObj:=Wobjg;
Movel HomePosition, v200, fine, mytool\WObj:=Wobjo;
ELSEIF DO_pHome AS=1 or DO_Zonel AS=1 THEN
Movel pZone3_AS, w208, fine, mytool\WObj:=Wobj@;
Movel pZone3_SD, w208, fine, mytool\WObj:=Wobje;
Movel HomePosition, v208, fine, mytool\WObj:=Wobjé;
ELSEIF DO_Zone2_AS=1 THEN
Movel pZoned AS, w208, fine, mytool\WObj:=Wobjg;
Movel pZoned_SD, w288, fine, mytool\WObj:=kobjé;
Movel HomePosition, v208, fine, mytool\WObj:=Wohbj&;
ELSE
TPWrite ("Vui long Jog robot ve vi tri gan Home");
ENDIF
ENDIF
endproc

Figure 3.24: process ‘rHome'.

After the ‘Initial’ process, the robot will start its first movement. As mentioned before, the robot
will have to make sure there are no screw stuck inside the tool before starting a new work process.

To do this, I will name this process ‘ScrewChecking’. The content of this process is:

PROC ScewChecking()
Movel HomePosition, w488, zl8, mytool;
Movel pDrop, w480, z10, mytool;
Movel Drop, v48@, z16, mytool;
WaitTime\inpos, ©;
PulseDO dol4_Drop;
WaitDI di®7_RB_ScrewDroped, 1;
Movel pDrop, v480, z1©, mytool;
Movel HomePosition, w488, zl8, mytool;
PulseDO dol5_Dropped;
ENDPROC

Figure 3.25: process ‘ScrewChecking’.
It can easily be seen that the process is a group of basic move function along with controlling the

signals, with the ‘pDrop’ is the position lies above the ‘Drop’ or ‘pDrop’ is the offset position of

54

‘Drop’. The robot will moves its TCP from ‘HomePosition’ to ‘pDrop’ and then ‘Drop’, the
‘waittime\Inpos, 0;” means that the system will have to wait until the TCP reached ‘Drop’ and not
any moment before, to pulse out the signal ‘dol4 drop;’ toward PLC. PLC then will make the
screwdriver tool to pushes down, releasing excess screw (if any) and then pulse out a signal to
robot. Robot will wait for this signal to know that the screwdriver has finished the process of
releasing excess screw and then move back to ‘HomePosition’, which concludes the process

‘ScrewChecking’.

The output signal ‘dol15 Dropped’ is to let the PLC knows the ‘ScrewChecking’ process is done.
Once receiving this signal, the workobject will then be delivered from the starting location toward
the working position. Once the object arrived, the stopper as well as the fixture mechanism will
move up, stopping the object from continue moving as well as fixing it to place. Another signal

will also be sent back to the robot, informing that the object is now fixed and robot can start

working on it. The object has a total of 28 screw points and located as follows:

Figure 3.26: Workobject screw’s location.

There are 21 points lie on the horizontal plane 7 points lie on the inclined plane. They will be
divided into 7 processes in which I will name them from ‘rPath1’ to ‘rPath7’, and each process

will include three points from the horizontal plane and one from the inclined plane:

55

Path 7: 78 2122
Path 6: 69 20 23
Path 5: 510 19 24
Path 4: 4 11 18 25
Path 3: 312 17 26
Path 2: 2 13 16 27
Path 1: 1 14 15 28

For path 1, my process will be as follows:

[T=T - I LV B - OV)

W W W R R MR R RS R R R R e e e R e e e e e e
W MR ® W AN R W R ® WS 3N R W N RE®

=

PROC rPath1()
ICh& tin higu con hang d3 &1 vi tri lam viéc
WaitDI dil®_ConvStopped,1;
waittime 2;
ITin hiédu robot bat dau lam viéc
set dol@ RobotWorking;
'Di chuyén t&i vi tri tidp canm 1&wit 1
movej offs(Work_1,8,8,5), v408, fine, mytool\WObj:=wobid;
'Pura tin hidu vé plc dé cdp vit vao tool
PulseDO do®7_HoverPosition;PulseDO do@l RB_ScrewSSP;
IChe tin hidu sensor vit d3 dugc cdp vao tool
WaitDI DI_RB_SCREWPASS,1;
'Di chuyén dén vi tri 10 1
Movel Work_1, w158, fine, MyTool\WObj:=Wcbj@;
PulseDO doB8_WorkPosition;
1Gri tin hidu v& PLC dé ddy xi lang dwa tool xudng va bat motor
WaitDI DI_RB_SCREWed,1;
IDi vé vi tri tiép can
movel offs(Work 1,8,0,5),v158,fine,mytool\wobj:=wobid;
'Di chuyén dé&n vi tri tidp can 15 2---»>

'Movel work_14, v48@, fine, MyTool\WObj:=Wobj@;

movel offs(Work_14,0,8,5),v480,fine,mytool\wobj:=wobij8;
PulseDO doB7_HoverPosition;PulseDO do®1_RB_ScrewSSP;
WaitDI DI_RB_SCREWPASS,1;

Movel Work_14, w158, fine, MyTool\WObj:=Wobjd;

PulseD0O doB8_workPosition;

WaitDI DI_RB_SCREWed,1;

movel offs(Work 14,0,0,5),v158,fine,mytool\wobj:=wobjd;
'Movel work_14, w20, fine, MyTool\WObj:=Wobje@;

!PulseD0 do®7 HoverPosition;PulseDO do®l RB ScrewSSP;

56

34

35 IMovel work_15, w408, fine, MyTool\WObj:=Wobj®;

36 movej offs(Work_15,8,0,5),v400,fine,mytool\wobj:=wobid;
37 waittime\inpos,®;

38 PulseD0 do®7_HoverPosition;PulseD0 do®l_ RB_ScrewSSF;

39 WaitDI DI_RB_SCREWPASS,1;

49 Movel Work_15, w158, fine, MyTool\WObj:=Wobj@;

41 PulseDO do®8 WorkPosition;

42 WaitDI DI_RB_SCREled,1;

43 Imovel work_15, w28, fine, MyTool\WObj:=Wob3j®;

44 movel offs(Work_15,0,0,5),v158,fine,mytool\wobj:=wobj6;
45 'PulseD0 do®7_HoverPosition;PulseDO do®l_RB_ScrewSSP;
46

a7 'Movel work_28, v208, fine, MyTool\WObj:=Wobj@;

48 movel offs(Work_28,8,08,5),v400,fine,mytool\wobj:=wobjd;
49 waittime\inpos,®;

58 PulseD0 do®7_HoverPosition;PulseD0 do®l_ RB_ScrewSSF;

51 WaitDI DI_RB_SCREWPASS,1;

52 Movel Work_28, w158, fine, MyTool\WObj:=kobj@;

53 PulseDO do®& WorkPosition;

54 WaitDI DI_RB_SCRElWed,1;

55 'Movel work_28, w28, fine, MyTool\WObj:=Wobj@;

56 movel offs(Work_28,0,0,5),v158,fine,mytool\wobj:=wobj6;
57 reset dol® RobotWorking;

58

59 lwaittime 1;

60 !pulsedo doll_PathlDone;

61 ENDPROC

Figure 3.27: process ‘rPathl’

As mentioned above, when the stopper and fixture mechanism fix the workobject in place, it will
send out a signal which the robot will receive as ‘dil0_ConvStopped’. When receive this signal,
the robot itself will also set out a signal ‘do10_RobotWorking’ to the PLC, annoucing that it will
start its process now. After that, robot will start moving the TCP to the first location of path 1: point
1. But it will first stopped at the offset position of point 1, which is Smm above the z-axis. This is
displayed in the RAPID as the ‘Offs(Work 1,0,0,5)’. Another set of signals: ‘do07 HoverPosition’
and ‘do01 _RB_ScrewSSP’ will be pulsed to annouce PLC that the tool is in the waiting position
and ready to be supply with a screw now. After a screw from the supplier is supplied to the tool’s
head, PLC will give out a signal ‘DI RB_SCREWPASS’ to let the robot now it has finished
supplying, and the robot will continue moving downward the work location (line 15). Once the
robot’s TCP is in the work 1 position, it will pulse a signal ‘do08 WorkPosition’ back to the PLC
so the screwdriver head will start driving the screw into location. And once the screw is tightly
fixated into place and the screwdriver is forced to stop by the force sensor at the head of the
screwdriver, PLC will sent the signal ‘DI RB_ SCREWed’ back to the robot, annoucing it to move

back upto the offset position and finished the sub-process of screwing one location. I will then

57

repeat the code with three more location: 11, 15 and 28 and at the end of point 28, I will reset the
signal ‘do10_RobotWorking’ again so the PLC knows the robot has finished the ‘rPath1’ process
and allows the workpiece to go for another turn on the conveyor before continue ‘rPath2’. This
action is as I mentioned before, to simulate the real-life production line when many objects will be

deliver by the conveyor to the robot.

I will also create the rest of ‘rPath2’ to ‘rPath7’ with the same syntax, while at the very end of
‘rPath7” when the robot finished position 22 and the signal ‘do10 RobotWorking’ is reset, I will
also pulse out the signal ‘do11 Path1Done’ to let the plc knows the robot has fully completed the

whole process.

IMovel work_22, v280, fine, MyTool\WObj:=Wobj@;

movel offs(work_22,0,-5,5),v480,fine,mytool\wobj:=wohjo;
PulseDO do®7_HoverPosition;

PulseDO do®l_RB_ScrewSSP;

WaitDI DI_RB_SCREWPASS,1;

Movel Work_22, w158, fine, MyTool\WObj:=Wobj@;

PulseDO doB®8& WorkPosition;

WaitDI DI RB_SCREWed,1;

IMovel work_22, v28, fine, MyTool\WObj:=Wobjo;

Imovel offs(work_22,0,-5,5),v150,fine,mytool\wobj:=wobj@;
movel offs(work_22,0,-5,5),v150,fine,mytool\wobj:=wobjo;
reset dol@®_RobotWorking;

Figure 3.28: Ending of ‘rPath7’

Now that all the sub-processes has been made, the next thing I need to do is to put them all together
and forming a complete process serving screw-driving purpose. I will name this process
‘ScrewDriving’ and create a variable called ‘sum’. ‘Sum’ will take the value of zero at the

beginning and the ‘ScrewDriving’ process will be as follows:

58

64 |- PROC ScrewDriving()

65 WaitUntil di@9_SystemReady=1;
66 ScewChecking;
67 [= IF sum=8 THEN
68 rPathl;

69 sum:=sum+1;

7@ ENDIF

71 lwaittime 2;

72 - IF sum=1 THEN
73 rpath2;

74 sum:=sum+l;
75 ENDIF

76 lwaittime 2;

77 | = IF sum=2 THEN
78 rpath3;

79 sum:=sum+1l;
80 ENDIF

81 lwaittime 2;

82 [- IF sum=3 THEN
83 rpath4;

84 sum:=sum+1l;
85 ENDIF

86 lwaittime 2;

87 | = IF sum=4 THEN
88 rpath5;

89 sum:=sum+1l;
98 ENDIF

91 lwaittime 2;

92 | = IF sum=5 THEN

93 rpathé6;

94 sum:=sum+1;

95 ENDIF

I lwaittime 2;

97 = IF sum=6 THEN

EL rpath7;

99 sum:=sum+1;
160 ENDIF

181 lwaittime 2;

182 | - IF sum=7 THEN

1e3 PulseDO do@9_ProcDone;
104 sum:=9;

185 ENDIF

186 lwaittime 2;

187 ! endwhile

188 ENDPROC

Figure 3.29: process ‘ScrewDriving’

Simply, the robot will start running ‘ScrewChecking’ the ‘rPath1’ process first and once it’s done
the value of ‘sum’ will be plus 1, and then the sum will be one which will make the robot to start
‘rPath2’ and so on until the ‘rPath7’ is finished. And as stated above, RobotStudio will only runs
the processes that are lie in the main part of the program. So once I finished with all my process, I
have to put them all into the main part of the program, this one contains the ‘rInitial’ process and

the main process ‘ScrewDriving’:

15 |- PROC main()

16 rInitial;

17 ScrewDriving;
18

19 ENDFROC

Figure 3.30: process ‘main’.

One advantage of creating different processes is that the main program will be very neat and tidy,
making the entire program more organized. I also can easily see where changes need to be made

if I want to modify or adjust the program.

After finishing the programing process, the'last thing'I'need to do is to teaching the exact screwing
positions for the robot. To do this, I first go into the teaching process I named ‘teachpoint” where
I already put in there 28 moving function for 28 targets. Then, I will perform the same steps stated
in the “Teaching Process” section to teach my work positions. All of the work positions will be
taught Smm above the threaded-hole to ensure the no-collision between the tool’s duck-beak and

workpiece, thus avoiding damage to both components.

60

MyTool\WObj:=Wobj6;
MyTool\WObj:=WobjB;
MyTool\WObj:=Wobjg;
MyTool\WObj:=kobid;
MyTool\WObj:=Wobije;
MyTool\WObj:=Wobjg;
MyTool\WObj:=WohjB;
MyTool\WObj:=Wobije;
MyTool\WObj:=Wobj6;

MyTool\WObj
MyTool\WObj
MyTool\WOb3
MyTool\WObj
MyTool\WObj
MyTool\WObj
MyTool\WObj
MyTool\WObj
MyTool\WObj
MyTool\WObj
MyTool\WOb3
MyTool\WObj
MyTool\WObj
MyTool\WObj
MyTool\WObj
MyTool\WObj
MyTool\WObj
MyTool\WObj

:=hobjé;
:=kobj8;
:=kliobj@;
:=Wobj8;
:=kobj8;
:=hobjé;
:=Wobj8;
:=kiobja;
:=hobjé;
:=kobj8;
:=kliobj@;
:=Wobj8;
:=kobj8;
:=hobjé;
:=Wobj8;
:=kiobja;
:=hobjé;
:=kobj8;

v5, Tine, MyTool\WObj:=Wobjd;

Figure 3.31: Process ‘teachpoint’

2 E proc teachpoint()

3

4 Movel Work_1, v2@, fine,

5 Movel Work_2, w28, fine,

6 Movel Work_3, v2@, fine,

7 Movel Work_4, v28, fine,

8 Movel Work_ 5, v2@, fine,

9 Movel Work_6, v2@, fine,
10 Movel Work_7, w28, fine,
11 Movel Work_8, v2@, fine,
12 Movel Work_9, v2@, fine,
13 Movel Work_1@, w28, fine,
14 Movel Work_11, v20, fine,
15 Movel Work_12, v28, fine,
16 Movel Work_13, v20, fine,
17 Movel Work_14, v20, fine,
18 Movel Work_15, w28, fine,
19 Movel Work_16, v20, fine,
20 Movel Work_17, v28, fine,
21 Movel Work_18, w28, fine,
22 Movel Work_19, v20, fine,
23 Movel Work_2@, v28, fine,
24 Movel Work_21, v20, fine,
25 Movel Work_22, v20, fine,
26 Movel Work_23, w28, fine,
27 Movel Work_24, v20, fine,
28 Movel Work_25, v28, fine,
29 Movel Work_26, w28, fine,
30 Movel Work_27, v20, fine,
31 Movel Work_28,

32 endproc
3.3 PLC programming

ABB Automation Builder is the main PLC software for our demo station. Steps to operate the

software are also simple. At the very beginning after launching the software, I will see the home

screen as follows:

61

e futomation Buider 26 - Basc - 8 x
Ble Edt Yiew Projet Buid Qniine Debog Jook Window el
R W . ERE) >

Devices. > x Start Page X =
- Y

ABB o

Cyber Security
» ABB cyb urity alerts and nofificat
ABB strongly recommends 1o subscribe to
-mal ajerts!
Download
2] Conepage ot project ot
|5 Devems (Y7000) Show page snstartio
CE =
Projea user: (nobedy)) Lsthds ©0 ® 0 Precomple o/
B Poperecosercn o @ W w G M W o ~&wmee TR0 0

Figure 3.32: ABB automation Builder home screen.
Click on ‘File’ > ‘New Project’ on the tool bar or simply ‘New Project’ from the ‘Basic operations’
section to start a new project. A small window will pop up for me to select the save location, name

of the project as well as the hardware selection.

A Automation Builder 2.6 - Basic = a X
File | Edit View Project Build Online Debug Tools Window Help Y
[Mewrriet. o T R °om

@ Open Project... Ctri+0

Project Archive ’

Source Upload.. B peratior atddd R:6
nt (2 NewProject... a
& OpenProject... Al' PLC Automation Automation Builder ABB Ability
Page Setuy (@ openProject fromPLC.
Recent Projects »
Bt An.F4 JRecent projects Getting Started

@ Flexcble Cell TEST 1
@ Flexcble Cel TEST
@ Project1

@ Fiexcble Cel TEST
@ Flexcble Cell TEST 1
@ Bso

@ Projectt

Automation Bulldes

Cyber Security

« White Pape
ABB cyber security
ABB strongly recom!
e-mail alerts!

Download

« Release notes

[Close page after project load

= Installation and activation

S Devices | [Pous [Show page on startup v
[B) Messages - Total 0 error(s), 0 warning(s]
Project user: (nobody) Q Lastbuid: @ 0 ® 0 Precomple /
. > = X ; 1112 AM
@ O Type heretosearch L,' ~ B @ w = G H A (p == A GO ® NG o, [

62

|=] New Project x
Categories Templates

[Libraries
[_d Projects

Lleknhl) Tad Empty project

A project containing one ACS500 PLC

Name IProjecrl

Location IC:\Users\ADMIN\Documems v

5] o

Figure 3.33: Configure ABB's Automation Builder.

Since our station uses the PLC PM 583-ETH which belongs to the AC500 series, I will choose AC
500 project in the Templates, then select the AC500 PM583-ETH which is in the PLC — AC 500
V2 categories. Double-click on ‘Application’ insde the project window after that will open the
CoDeSys — the main interface to program. I can also right-click on the PLC PRG to add more
programming window with different language suchas ladder/(LD) or function blocks (FBD). The
descriptive programming of the PLC will be carried out by my thesis partner, Mr Doan Minh
Khang.

63

Devices

* o X
=3 Projects -
= (@ PLC_AC500_v2 (PMS83-ETH - TB521-ETH)

= &0 Appiication
& App
-~ 10_Bus

= o Interfaces

M) COM1_Onine_Access (COM1 - Onli
M com2_Online_Access (COM2 - Onli
.; FBP_Online_Access (FBP - Online Al
= £ Ethernet
@ EmiEHY
“@ Protocols (Protocols)
=@ Extension_Bus
M Slot_1(TA524)
B Slot_2(TAS24)

® CoDesys - Application ACS00PRO*

File Edit Project Insert Extras Online Window Help

8| BSOS (EAR| ¥ (0| b [B@(G@H [] mE i olojo| 3|888(8| %
ER | | % pic.pre pre-sn (==)=]
@ PROGRAM PLC_PRG
“~[#) PLC_Rabot [PRG) VAR
FOGRAM PLC_Robot
: VAR
: END_VAR
<

Vietnamese-German University

Figure 3.34: Main programming interface of ABB Automation Builder.

64

Chapter 4. EVALUATING AND OPTIMIZING
4.1 Evaluating and optimizing the demo station’s process
¢ Finding the approriate speed value

After completing the robot path programming and ensuring all signals operate as intended, the first
thing I need to do is to find out what is the fastest speed possible for the station to operate smoothly
and not having problems. To do this, I will simply try running the program with different speed
data. To do this, I will keep on executing the process but putting in different value of speed in the

proccess ‘rPathl’ to ‘rPath7’.
Movel Work_1, v15@, fine, MyTool\WObj:=Wobjo; — Movel Work 1, VZGP, fine, MyTool\WObj:=Wob3j0;

Figure 4.1: Example on changing speed data using RAPID code.
I will start from the low speed value v100 which means 100mm/s for all of the movements, then
continue increasing the speed until the problems start to show up. After several trial run, I have
sucessfully found out the set of value which will also make the station runs fine while keeping it
stable: The robot speed to move from one-an offset of a target to an another is 400mm/s, moving
speed between the offset position and the work: position ‘of/one target is 150mm/s. Any higher
speed compared to this would cause the robot shaking, affecting the effiecieny and it’s life span.
And these numbers are also used in the program above.
e First evaluating and optimizing

a. Evaluating

My final and most important task is to evaluate the current performance of it and find solutions to
optimize the efficiency if the current performance does not meet the requirement. The target set by
ABB Robotics is above 99%, meaning that out of every 100 screws, a maximum of 1 screws may
be missed. With that number in mind, I will start making a checklist showing the hit and miss rate

of as many screws as I can. After the first evaliation, the result came back as follows:

Bing testing tram ban it s4 lvong 1000
Patha

nnnnnnnnnn

Loi nhe lan 2
v

65

Total vit ban dwoc |Total vit |ti 1€ total (%)
189 392 48.21

Figure 4.2: First evaluation checklist.

It can easily be seen that of all 15 routines, there is only one time the robot can screw all 28 target
without having a problem. Not mentioning about ABB Robotic’s requirement just yet, only 3 out
of 15 routine has a sucessful rate above 50% which is generally a very poor performance so far.
But these numbers are not surprising considering that this is ABB Robotics' first attempt at
automating the screwing process. It's certain that perfection from the start would be almost
impossible to achieve.

b. Optimizing

It can easily be seen the main cause of missed screwing is the screws getting misalinged from the
threads, in which I noted in the checklist as “léch ren”. The detail explaination for this problem is
that even though the tip of the screw has been inserted into the correct position of the threaded
hole, the rest of it is misaligned and not perpendicular to the threaded hole. And it will resulted in
the screwdriver will not be able to twist, it into-place when being pushed down, and it can even

destroy the threaded hole. The below photo shows the problem occurred in one of the inclined

positions.

Figure 4.3: Misalinged screw.

66

And judging from the checklist, I can see that the problem can occur everywhere on the workobject
and not repeatedly at any specific position. This means that the problem doesn’t come from the
threaded hole itself but may come from the screwdriver tool, more specific is the teaching positions
aren’t accurate enough. This made me realized a mistake I made in the process of teaching the
screwing position, which is not checking every position manually after teaching it. Knowing this,
I started optimizing the demo the following day. Firstly, I double-check all the positions by using
the FlexPendant to jog the robot to each work position, and manually pulsing the signal to make
the screwdriver twists the screw into the threaded hole, and proceed to re-teach all the positions
that have the problem.

Once that is finished, I continue to address the problem of broken screw, which I noted as “vit
hong”. This problem occurs simply because among the hundreds of screws used for screwing into
the workpiece, some of them have damaged heads and are stripped. This problem also related
directly from the misalignment problem mentioned earlier. Specifically, when a screw is
misaligned from the threaded hole, the screwdriver tool presses and rotates downwards, but it still
can't enter the hole and instead gets stuck. This leads to strong collision and friction between the
screwdriver tool and the head of the screw and will destroy the screw’s head and lead to broken
screw. To address this issue, I simply take out all‘of‘the'screws in the supplier and then proceed to
check one by one. I check them by pushing the screwdriver’s head into every screw’s head and
twist the screw by hand. If any screw slipped from the screwdriver’s head, it means that the screw

is broken and I will discard it.

67

68

rd
=
7
=
v
-
Tech
=
Ych ron
-
-
Iéch ren | lach ren
Tch ren

imizing

ren|
ren |+
ren|
v [
7
-
v v
|
P 4
Fa
v v
v -
Tl v
v |-
Fa

Figure 4.4: Checking screw manually.

ra
I
-
-
=
I
-

Second evaluating and opt

II_(({{{
ST N Y

v
s
-
v
v
-

Evaluatin

n1s | v
16
in22

After the first optimizing process, the result for the next evaluation came in as follows:

a.

Total vit ban duoc |Total vit |ti 1€ total (%)

63.10

Figure 4.5: Second evaluation checklist

Although the accuracy rate of screwing has increased from 48% to 63%, it's still far from our goal
and it’s also evident that misalignment issue remains the primary cause of errors. This means that
double-checking the positions of the work positions may not be the most accurate solution, as the
underlying cause may still come from another factor. And since I'm not sure exactly what that
factor is, the only thing I can do is to run more test cycles combined with observation and recording
slow-motion videos. And after several test runs and study my slow-motion videos, I finally
identified a serious issues: the fixture mechanism is not working as intended as the workpiece is

still shifting and isn’t securely fixed on it.

The fixture mechanism of our the demo station is a metal plane fixed on an air cylinder and on that
plane will be two locating pin placed diagonally to eachother. Initially, It will lay beneath the
conveyor and will be pushed up when receive signals. And simultaneously, on the underside of the
workpiece, there will also be two corresponding holes, for. the two pins to go into and secure it.
And that when the problem comes in, there were an error in the machining process of the workpiece
leading to one of the two holes on the workpiece bigger than the other and the pin and as a result

causing the workpiece shifting everytime the screwdriver pressed down the threaded-holes.

Figure 4.6: Fixture mechanism.

69

Hole with correct
dimension

i

Hole is bigger than the
other and the pin

5

L3
fi
ie

Figure 4.7: Locating holes on workpiece with problems.
b. Optimizing

Since this workpiece has already been machined beforehand, I have no way to intervene and make
direct adjustments on it. Instead, I will have to adjust the position of the stopper to fix this problem.
Like the fixture mechanism, the stopper contains a rectangle metal piece installed above the air
cylinder, that piece will be pushed up to block the workpiece as it’s moving on the conveyor.
Luckily, the stopper is also mounted on it’s own locating system, which I can manually shifting

the position by unloading the two screws holding it and moving the stopper between an allowed

distance.

70

Holding screws

Stopper

Figure 48: Stopper:

So far, there’s still a small distance between the workpiece’s fixture mechanism and the stopper.
The reason for this is I want to make sure there would be no collision between those two in the
working process. But after seeing the serious problem mentioned above, I decided to shift the
stopper closer to the fixture mechanism and somewhat pressing into it. The idea is to also turning
the stopper into a thrid ‘locating pin’ and stop the workpiece from shifting in the screwing process.

The result is as follows:

71

Figure 4.9: Fixture and stopper mechanism after adjustment.

It can be seen that now, the stopper is also securely fixed against the workpiece. The little yellow
pieces on the four corners of the stopper is made of rubber and will ensure elasticity to prevent

damage from collisions between it and the workpiece.

e Third evaluation and optimizing

a. Evaluating

After fixing the problem of the workpiece shifting, the result of the following evaluation came in

as follows:

72

|

a4~

EYEN EYENENENES

a

R RRRNRRRRRRRRE

afsff sl
aln] s s

]
:

RYRSENEN EYENENENENEN ENENENENENES

RYE R YR BN

\E\E\
2| |

\E\\\\\
2

EYRYENEN o EYEREY LY EN B8 PN RN BN g B
H Er

\\\\'«ss\\?'«ss\\w

RYRVENEN EYENENENENEN EYEN ENEN N i

\\\\\s\\\\\sf\\w
RYRYENEN EYENENENENEN BN EN ENEN NS
w[a[ala o] s]<[<]2]o[s][«] 2] <5
RYRSENEN Y EYENENENEN Y BN R RN BN b

\g\\\ﬂﬂgkkkﬂ\\\
RYRSENEN EYENENENENEN ENENENEN NS

RYRSENEN EYENENENENEN ENENENENEN RS

RYRVENEN EYENENENENEN ENENENENENES

a[a[ala[a[]]s[«]2[s[s] <] <] 4]
\\\\\\\g\

EYESENEY EY Y EN Y EYEN EY Y EY ENEY
NRRRARRRRRARRER
\\\\'«ss\\f'«ss\\
RYRSEYEY EYEYENENENEN EYEN RN ENEN
\\\\\E\\E\\\\\\
slafafa]a]a] s fafa]a]a] 8] 8]

EYRVENEYENENENENENEN 4
2[2

\\\;\\\\\\\\\\\
slafsfs] s s s s8]y

ssfss] sy s s s
ERVENEN EYEYENEN
RYEVENEN CYENENENEN

RN

Total vit ban dwoc |Total vit ti 1€ total (%) I
95.47619

Figure 4.10: Third evaluation checklist.

Compared to the last evaluation, this time there has been a tremendous increase in the hit rate of
our screw-driving demo, which means I have found and succesfully fixed what could be seen at
the most serious issue so far. However, this rate is still not perfect as it's lacking about 4%
compared to the requirement set by ABB Robotics and again, the remaining issue is still misalinged

screws, though significantly lesser than before.

b. Optimizing

Instead of addressing the issue like how I did in the first evaluation, I decided to approach it in a
different view. This time by manually inspecting the screwdriver’s movement combining with
slow-motion videos, I noticed a detail that is most likely the root cause for the problem. Right at
the moment the screwdriver’s head pressed down and the duck’s beak part opened, the screw itself
is shaking due to eccentricity. This happens because the screwdriver’s head itself is also eccentric

when rotating.

Screw is leaning left and right

Figure 4.11: Screw shaking due to eccentricity.

73

To solve this problem, I will adjust the screwing positions so that they are no longer Smm above
the workpiece but instead touching it, which means the duck’s beak part will now touch the
workpiece. Since when the beak opens, the screw starts to wobble and if it remains Smm away
from the workpiece, the screw will continue to wobble within that range. And after further
discussion with Mr. Nguyen Minh Toan, head of this station, I decided to adjust the tool further.
The new one will have the duck’s beak part connected with a spring system, ensuring elasticity
between the collision of it and the work-piece and prevent those two from getting broken. After

designing and machining, the result for the new tool head is as follows:

Vietn liversity

Figure 4.12: Designing of the new tool head using SolidWorks.

74

Figure 4.13: Real product after machining.

After finishing setting the new tool on the robot, I once again teaching the new work positions
using the FlexPendant and after that running the evalution. This time, the result came out almost
perfect as in the next 15 turns, only happen two miss positions and from the error of “broken

screw”. And to fully get rid of this simple problem, I decided to replace all the current screws into

Vietnamese-German Universit

completely new ones. The result later on has been accepted by Mr Nguyen Minh Toan, head of the

project.

4.2 Results before and after the evaluation and implementation

It can be seen that the results I obtained after evaluating and optimizing the station were beyond
expectations. This means that I have correctly assessed and identified the issues and provided
reasonable solutions. And if these solutions are not sufficient in the long term, at least I have
identified the correct direction to pursue, which will make long-term optimization easier to

implement. The figure below shows the difference before and after optimization.

Figure 4.14: Result before and after optimizing processes

75

Chapter 5. CONCLUSION AND FUTURE WORK
5.1 Conclusion

After a long period of research, practice, and applying the skills I learned, the project 'Operating
and Optimizing the Screw-Driving Efficiency for ABB Robotics' Demo Automatic Screw-Driving
System' has completed. Although there are still some shortcomings and a few things that can be
improved, the project has fundamentally achieved the initial objectives. And above all, during the
implementation of this project, I had the opportunity to learn many new things that can benefit me

greatly in the future.

Besides reinforcing my knowledge about devices like PLCs, sensors, and programming languages,
I also learned a lot about the structure and operation of industrial robots in general, and ABB robots
in particular. This knowledge is essential and extremely important as we are in the era of Industry
4.0 and looking towards the future, where automation will become highly popular and widely

applied.
5.2 Future work

Since this is a demo station, the potential" for furtherrimprovement of this project is still very
significant. In the future, instead of using a system of fixed positions like we currently do, we
could implement a vision system to optimize the station for various types of workpieces. Moreover,
a full re-design of the tool can also be considered in order to decrease the size and weight, and
fixing minor caussing the tool head’s to rotating eccentric. But overall, the project has meet it’s

basic requirement.

76

REFERENCES
[1] David Peterson, 2023, “Origin Story: Meet Unimate, the First Industrial Robot”.

Meet Unimate, the First Industrial Robot

[2] Abby, 2023, “Shakey the Robot Explained: Everything You Need to Know”.

Shakey the Robot Explained: Everything you need to know

[3] Alex Misiti, 2020, “A History of Industrial Robot.”.

History of Industrial Robots

[4] ABB Robotics, 2024, ““ Product Manual: IRB 1100

Product Manual: IRB 1100

[5] ABB Robotics, 2024, “ Product Specification: IRB 1100”

Product Specifications: IRB1100

[5] ABB Robotics, 2023, “ Application Manual: Scalable /O™

Application Manual: Scalable /O

[6] ABB Robotics, 2020, “ Operating Manual: OmniCore”

Application Manual: OmniCore

[7] ABB Robotics, 2022, “ Product Manual: OmniCore E10”

Operating Manual: OmniCore E10

[8] Nguyen Luu Minh, 2022, “Similarities and differences between Profinet and Ethernet.”

Profinet vs Ethernet

[9] Duy Nhat, 2024, “Ladder Logic/Ladder Diagram.”

Ladder Logic/Ladder Diagram

[10] ABB Robotics, 2024, “Product: PM583 — ETH”

PMS583-ETH | ABB

https://control.com/technical-articles/origin-story-meet-unimate-the-first-industrial-robot/
https://history-computer.com/shakey-the-robot/
https://www.wevolver.com/article/a-history-of-industrial-robots
https://library.abb.com/r?cid=9AAC407609&q=%203HAC064992-001
https://library.abb.com/r?cid=9AAC407609&q=3HAC064993-001
https://library.e.abb.com/public/0eec399058e247c6a491c726b3bb62f1/3HAC070208%20AM%20Scalable%20IO%20RW%207-en.pdf?x-sign=vYD6RtWsM68yUo73AuLRdphwwONJ7c1mN8hO0EVNtHIeYJByinw9tZzXciNR/fnV
https://www.google.com/url?sa=i&url=https%3A%2F%2Fus.v-cdn.net%2F5020483%2Fuploads%2Feditor%2Fbe%2Fpfx1qeuj75h4.pdf&psig=AOvVaw28DJDQLHzxNejhJjlm3bBG&ust=1722496482591000&source=images&cd=vfe&opi=89978449&ved=0CAQQn5wMahcKEwjAnfzJ3dCHAxUAAAAAHQAAAAAQBA
https://assets.ctfassets.net/oxcgtdo88e20/2R45HQd5vDVzzDNd71GDgd/b8d60219f34d39c12757743151ddd88d/3HAC079399_PM_OmniCore_E10-en.pdf
https://viettuans.vn/profinet-la-gi
https://mesidas.com/ladder/
https://new.abb.com/products/1SAP140300R0271/pm583-eth

