
 

 

COPYRIGHT WARNING 

 

This paper is protected by copyright. You are advised to print or download ONE 

COPY of this paper for your own private reference, study and research purposes. You 

are prohibited having acts infringing upon copyright as stipulated in Laws and 

Regulations of Intellectual Property, including, but not limited to, appropriating, 

impersonating, publishing, distributing, modifying, altering, mutilating, distorting, 

reproducing, duplicating, displaying, communicating, disseminating, making 

derivative work, commercializing and converting to other forms the paper and/or any 

part of the paper. The acts could be done in actual life and/or via communication 

networks and by digital means without permission of copyright holders.  

The users shall acknowledge and strictly respect to the copyright. The recitation must 

be reasonable and properly. If the users do not agree to all of these terms, do not use 

this paper. The users shall be responsible for legal issues if they make any copyright 

infringements. Failure to comply with this warning may expose you to:  

 Disciplinary action by the Vietnamese-German University. 

 Legal action for copyright infringement. 

 Heavy legal penalties and consequences shall be applied by the competent 

authorities. 

The Vietnamese-German University and the authors reserve all their intellectual 

property rights. 

 

 



i 
 

 

 

 

 

 

 

 

ENHANCING THE ABB ROBOTICS 
SCREW-DRIVING SYSTEM’S EFFICIENCY 
THROUGH THE IMRPOVEMENT OF 
MECHANICAL INSTALLATION 
 

BACHELOR THESIS 

BINH DUONG 2024 

SUBMITTED BY: LE QUOC BAO 

RUB STUDENT ID: 20267550 

VGU STUDENT ID: 14598 

SUPERVISOR: PROF. DR. NGUYEN QUOC HUNG 

CO-SUPERVISOR: MSC. CHAU KHAC BAO CHUONG 

  



ii 
 

ACKNOWLEDGEMENT 

I would like to express my deepest gratitude to Mr. Nguyễn Minh Toàn, who directly guided me 

during my internship at ABB Robotics and also proposed the thesis topic as well as provided me 

with the equipment needed to complete it. During the working process, problems are inevitable 

and sometimes they lead to dead ends. However, thanks to Mr. Toàn's advice and dedicated 

assistance, I was able to complete this thesis smoothly. Additionally, I would like to thank Mr. 

Đoàn Minh Khang - MEN 2019, who worked directly with me on this thesis. Thanks to him, the 

progress and outcomes of the thesis were ensured. 

 

And of course, I cannot forget to express my gratitude to the Vietnamese-German University. 

Throughout my studies here, I have been very fortunate to be taught by a dedicated faculty. 

Especially, the teachers in the Mechanical Engineering department who have imparted valuable 

knowledge to me, enabling me to complete this thesis and further my future career. 

 

And finally, my heartfelt thanks go to my family. They have always been by my side, encouraging 

me through difficult times so that I could overcome them and complete this thesis. Without them, 

I certainly would not have been able to achieve this. 

Sincerely, thank you!



iii 
 

TABLE OF CONTENT 

ACKNOWLEDGEMENT .............................................................................................................. ii 

TABLE OF CONTENT ................................................................................................................. iii 

LIST OF FIGURES AND TABLES ................................................................................................v 

ABSTRACT ................................................................................................................................... ix 

 

CHAPTER 1. INTRODUCTION .................................................................................................1 

1.1 Problem Statement .....................................................................................................................1 

1.2 Objective ....................................................................................................................................2 

1.3 Scope of implementation ...........................................................................................................2 

1.4 Limitation ...................................................................................................................................2 

1.5 Outline........................................................................................................................................3 

CHAPTER 2.  BACKGROUND STUDY ....................................................................................4 

2.1 Application of technology ..........................................................................................................4 

            2.1.1 Brief history of automation .........................................................................................4 

 2.1.2 Brief overview and development of Robots ...............................................................5 

 2.1.3 Brief development of ABB Robotics ..........................................................................6 

2.2 Communication technology .......................................................................................................7 

 2.2.1 Industrial Ethernet and PROFINET ............................................................................7 

 2.2.2 Ladder Programming language .................................................................................10 

 2.2.3 RAPID language .......................................................................................................14 

2.3 Main hardware .........................................................................................................................16 

 2.3.1 IRB1100 – 4/0.75 ......................................................................................................16 

 2.3.2 Omnicore E10 ...........................................................................................................19 



iv 
 

 2.3.3 FlexPendant...............................................................................................................22 

 2.3.4 DSQC 1030 ...............................................................................................................24 

 2.3.5 PM583 – ETH ...........................................................................................................28 

 2.3.6 Robot tool..................................................................................................................30 

 2.3.7 Other devices and screwing principle .......................................................................31 

CHAPTER 3. PROGRAMMING ROBOT’S MOVEMENT ..................................................32 

3.1 Operating principle ..................................................................................................................32 

3.2 Robot programming .................................................................................................................34 

 3.2.1 RobotStudio software................................................................................................34 

 3.2.2 Creating robot’s movement .......................................................................................34 

3.3 PLC programming ...................................................................................................................61 

CHAPTER 4. EVALUATING AND OPTIMIZING .................................................................65 

4.1 Evaluating our demo station’s process .....................................................................................65 

4.2 Results before and after the evaluation and implementation ...................................................75 

CHAPTER 5. CONCLUSION AND FUTURE WORK ...........................................................76 

5.1 Conclusion ...............................................................................................................................76 

5.2 Future work ..............................................................................................................................76 

REFERFENCE ............................................................................................................................77 

 

 

 

             

  



v 
 

 

LIST OF FIGURE AND TABLE 

Figure 2.1: Operating principle of the PROFINET protocol ...........................................................9 

Table  2.1:  Differences between IE and PROFINET ....................................................................10 

Figure 2.2:  The basic structure of a PLC program ........................................................................ 11 

Figure 2.3: AND – logic operation. ...............................................................................................13 

Figure 2.4: OR – logic operation ...................................................................................................13 

Figure 2.5: NAND – logic operation .............................................................................................13 

Figure 2.6: NOR – logic operation. ...............................................................................................14 

Figure 2.7: Timer Pulse (TP) function block .................................................................................14 

Figure 2.8: Basic programming language of RAPID.....................................................................15 

Figure 2.9: Endurance and maximum load for floor mounted configurations ..............................16 

Figure 2.10: Dimension and working range of IRB1100 ...............................................................17 

Figure 2.11: Synchronization marks and each axis’s movement directions of IRB1100 ..............19 

Figure 2.12: ABB’s Omnicore-series controllers ...........................................................................20 

Figure 2.13: Omnicore E10 and connection ports .........................................................................21 

Table 2.2: Connection ports of Omnicore E10 ..............................................................................21 

Figure 2.14: ABB’s Omnicore FlexPendant ..................................................................................22 

Figure 2.15: Main parts of FlexPendant. .......................................................................................23 

Figure 2.16: positions of the hard buttons on the Flexpendant. .....................................................24 

Figure 2.17: holding the Flexpendant ............................................................................................25 

Figure 2.18: Main screen of FlexPendant ......................................................................................26 

Figure 2.19: DSQC 1030 ...............................................................................................................27 



vi 
 

Figure 2.20: DSQC 1030’s connection ports .................................................................................28 

Figure 2.21: Technical data of PLC PM583-ETH .........................................................................29 

Figure 2.22: Tool’s head decription. ..............................................................................................30 

Figure 2.23: The Zeda automatic screw feeder and the Hios screwdriver head ............................31 

Figure 3.1: Flow-chart of robot’s movement .................................................................................33 

Figure 3.2: Electric path circuit between robot’s I/O board and PLC I/O bus...............................36 

Figure 3.3: tool0 and new tool’s position.......................................................................................37 

Figure 3.4: Inputing data for new tool ...........................................................................................38 

Figure 3.5: Tool TCP Definition wizard ........................................................................................39 

Figure 3.6: Jogging window of FlexPendant .................................................................................40 

Figure 3.7: Initial interface of RobotStudio ...................................................................................41 

Figure 3.8: Configuring IP address for PC ....................................................................................42 

Figure 3.9: Main programming window of RobotStudio ..............................................................42 

Figure 3.10: Zone-data explanation ...............................................................................................43 

Figure 3.11: Direction of wobj0 .....................................................................................................44 

Figure 3.12: Creating signals .........................................................................................................45 

Figure 3.13: All signals created .....................................................................................................46 

Figure 3.14: different configurations for a target ...........................................................................47 

Figure 3.15: Creating target (1) .....................................................................................................47 

Figure 3.16: Creating target (2) .....................................................................................................48 

Figure 3.17: Synchronizing targets into controller ........................................................................49 

Figure 3.18: Process ‘teaching’ ......................................................................................................50 

Figure 3.19: Finding process ‘teaching’ in FlexPendant................................................................50 



vii 
 

Figure 3.20: Updating position ......................................................................................................51 

Figure 3.21: Moving robot to a taught position using FlexPendant ..............................................51 

Figure 3.22: process ‘Initial’ ..........................................................................................................52 

Figure 3.23: process ‘Zones’..........................................................................................................53 

Figure 3.24: process ‘rHome’ ........................................................................................................54 

Figure 3.25: process ‘ScrewChecking’ ..........................................................................................54 

Figure 3.26: Workobject screw’s location ......................................................................................55 

Figure 3.27: process ‘rPath1’ .........................................................................................................57 

Figure 3.28: Ending of ‘rPath7’ .....................................................................................................58 

Figure 3.29: process ‘ScrewDriving’ .............................................................................................59 

Figure 3.30: process ‘main’ ...........................................................................................................60 

Figure 3.31: Process ‘teachpoint’ ..................................................................................................61 

Figure 3.32: ABB automation Builder home screen ......................................................................62 

Figure 3.33: Configure ABB’s Automation Builder ......................................................................63 

Figure 3.34: Main programming interface of ABB Automation Builder.......................................64 

Figure 4.1: Example on changing speed data using RAPID code .................................................65 

Figure 4.2: First evaluation checklist .............................................................................................66 

Figure 4.3: Misalinged screw .........................................................................................................66 

Figure 4.4: Checking screw manually ...........................................................................................68 

Figure 4.5: Second evaluation checklist ........................................................................................69 

Figure 4.6: Fixture mechanism ......................................................................................................69 

Figure 4.7: Locating holes on workpiece with problems ...............................................................70 

Figure 4.8: Stopper.........................................................................................................................71 



viii 
 

Figure 4.9: Fixture and stopper mechanism after adjustment ........................................................72 

Figure 4.10: Third evaluation checklist .........................................................................................73 

Figure 4.11: Screw shaking due to eccentricity .............................................................................73 

Figure 4.12: Designing of the new tool head using SolidWorks ...................................................74 

Figure 4.13: Real product after machining. ...................................................................................75 

Figure 4.14: Result before and after optimizing processes ............................................................75 

  



ix 
 

ABSTRACT 

Robots are becoming increasingly popular as the world enters the era of Industry 4.0. Thanks to 

their versatility, robots can be utilized in a wide variety of life aspects and are even more 

extensively employed in the industrial and automation sectors. In conjunction with other 

mechanical devices such as conveyor belts and pre-designed tools, robots can significantly 

contribute to factory production lines by automating processes that previously required manual 

labor. 

 The purpose of this paper is to explain the process of operating and optimizing the efficiency of 

ABB Robotic’s automatic screw driving system using ABB’s industrial robot along with 

mechanical components. This project uses the ABB RobotStudio and ABB PLC as the main 

software to programming and controlling the robot’s movement, and ABB Panel as the main 

human-machine interface. 

 

 



 

1 
 

Chapter 1. INTRODUCTION 

1.1 Problem statement 

The use of industrial robots to replace manual labor is becoming a highly favored trend in 

production lines. Thanks to their precision and processing speed, robots can achieve significantly 

higher efficiency than humans when performing such tasks. Until now, robots have already 

replaced humans in a wide range of industries, from light to heavy, including tasks such as pick-

and-place, palletizing, 3D printing, assembly, and welding, etc…. 

While the screw-driving process may seem straightforward, it requires high precision and 

perseverance due to the repetitive nature of the task over an extended period. For humans, having 

to undergo this process over a long period and continuously can easily lead to fatigue both 

physically and mentally, resulting in a decline in effectiveness at work. Thus, The automatic screw 

driving system is designed to address this issue. By fully automating the entire process with 

industrial robots and conveyor belts, this system will ensure continuous operation and high 

performance, regardless of the duration of operation. 

However, since the robot in this system is often programmed to move quickly and this can lead to 

screwing errors as the small screw positions can be difficult to target accurately. Therefore, Basic 

programming is just the first step. A lot of work still needs to be done to ensure that the system 

operate smoothly while still meeting the requirements. 

  

  



 

2 
 

1.2 Objectives 

In this project, I am aiming to programming and operating the automatic screw-driving system 

based on a blueprint that has been calculated and manufactured by ABB Robotics. Throughout the 

process I, Doan Minh Khang, my thesis partner, and Mr. Nguyen Minh Toan, an ABB mechanical 

engineer, worked together. The objectives are to fully functioning the system and making sure it 

meets the requirements of cycle time and efficiency given by ABB Robotics. 

1.3 Scope of implementation 

• Content 1: Creating the basic movement of the robot. 

• Content 2: Monitoring and evaluating current system performance. 

• Content 3: Identify and address issues affecting system performance: 

• Content 4: Design and manufacture new tool head. 

• Content 5: Review and evaluate result of the new tool, finishing the system. 

• Content 6: Finish the thesis. 

1.4 Limitation 

This project focus on programming and operating the industrial robot in the demo screw-driving 

station while focusing mostly on how to optimize and increase the efficiency. The station includes: 

• ABB IRB 1100 robot and OmniCore controller. 

• The screw driving tool set includes: screw feeder, screwdriver, custom-designed 

mechanical tool. 

• The conveyor system consists of four conveyors, the two conveyors from the left and right 

has cylinder to lift up and down. 

• Custom-designed workpiece fixture. 

• ABB PLC, expansion module, and HMI. 

• DSQC 1030 board for PLC and robot communication. 

  



 

3 
 

1.5 Outline 

Chapter 1: Introduction. 

• Introducing the paper, stating the reason on why choosing this topic.  

• Objectives, research content, limitations, and project layout. 

• Machine specifications. 

Chapter 2: Background study. 

• Background study and researches used to issue the problem, including communications, 

software and hardware. 

Chapter 3: programming robot’s movement. 

• Overview of the system’s operating procedure, flowchart. 

• Programming robot based on the it’s procedure. 

Chapter 4: Evaluating and optimizing 

• Monitor the operating process, identify any errors that occur, and find solutions to address 

them. 

Chapter 5: Conclusion and future work 

• Showing the result, and future aims of the project.  



 

4 
 

Chapter 2. BACKGROUND STUDY 

2.1 Application of technology 

2.1.1 Brief history of automation 

Automation - the adaption of technology to perform tasks that were previously carried out by 

humans. There is no precise point in time when this concept was formed, as in fact it is a gradual 

process of development rather than a sudden event.  Tracing back through history to even before 

the Common Era, automation has been employed when humans used simple tools and machines 

like the wheel, pulley, and lever to perform repetitive tasks, These are early examples of 

mechanical automation. Until the 18th century, the Industrial Revolution marked the advent of 

water - and steam - powered machines, automating many manufacturing processes. Notable 

examples include James Hargreaves's spinning jenny and Thomas Newcomen's steam engine. 

Moving on to the next century, the development of electricity and the internal combustion engine 

further fueled the advancement of automation. The first assembly lines were introduced, leading 

to mass production. Moving on to the next century, the development of electricity and the internal 

combustion engine further fueled the advancement of automation. This very development has 

enabled the formation of assembly lines and mass production. The 20th century witnessed the 

advent of computers and electronic devices, ushering in the development of more sophisticated 

automation systems. In 1968, the first Programmable Logic Controllers (PLCs) were designed and 

used at General Motors (GM) and since then, they have become an indispensable technology in 

controlling automation lines. And towards the final decades of the 20th century, robots began to 

be widely used in manufacturing, they along with the development of the internet, AI technology, 

and IoT, they have opened up a new era for the world, shaping the Fourth Industrial Revolution 

and driving the development of intelligent automation. 

Automation has made a profound impact on society, the economy and the world. First and foremost, 

it helps to improve production efficiency, reduce costs, and enhance product quality. While 

automation can effectively replace some human-performed tasks, it also has the potential to 

generate new jobs in the fields of design, programming, and operation of automated systems. 

Given the current pace of development in the era of Industry 4.0, automation is expected to 

continue expanding in the coming years, driven by the emergence of new technologies such as AI, 

IoT, and quantum computing. This will lead to even more profound optimistic changes in our world. 



 

5 
 

2.1.2 Brief overview and development of Robots. 

Robots have been one of humanity's greatest inventions for nearly 100 years, continuously 

evolving to become smarter, more useful, and safer. With advancements in science and technology, 

countries and industries worldwide are racing to innovate and manufacture the most advanced 

robots for every aspect of life and production. Nowadays, robotic arms are increasingly integrating 

advanced technologies such as artificial intelligence, machine learning, and internet connectivity. 

And in the future, there will be strong developments in automation capabilities, intelligent 

interaction, and close collaboration between humans and robots. The Development trends in the 

robotics industry include: 

• Integration of AI and Machine Learning: With the advancement of Industry 4.0, robotic 

arms increasingly utilize artificial intelligence to automate decision-making processes and 

learn from the working environment. 

• Collaborative Robots (Cobots): The emergence of collaborative robots capable of working 

alongside humans safely and efficiently. 

• Wide Applications in Healthcare and Services: Robotic arms are rapidly developing in 

fields such as surgery, healthcare, and customer service. 

• Exploration of Aerospace Technology: Applications include exploration and sampling on 

planets with conditions unsuitable for human presence, such as Mars. They also replace 

humans in industries dealing with hazardous waste and chemicals. 

The first industrial robot was created in the years of 1950s when George Devol and Joseph 

Engelberger's company, Unimation, developed the first robotic arm,  known as "Unimate." 

Unimate was utilized in automobile manufacturing processes. Unimate stands out as one of the 

first industrial robots used in manufacturing and was deployed at General Motors' (GM) 

automobile plant in the 1960s.[1] This marked a significant milestone in the history of industrial 

automation and robotics. It was an industrial robot capable of performing repetitive tasks in the 

manufacturing environment. Unimate marked a pivotal moment in the technological advancement 

of robotics in industrial production. Specifically, Unimate was used for tasks such as welding, 

painting, and handling components in the automotive assembly process. The integration of robots 

in manufacturing enhanced productivity, standardized product quality, and reduced risks for 

workers in hazardous tasks. Unimate had a profound impact on the manufacturing industry, paving 



 

6 
 

the way for the widespread development and use of industrial robots in various applications. The 

1960s were a crucial period in the history of industrial robot development, as they began to appear 

extensively in various industries, including electronics and chemical processing. Although still 

relatively rudimentary, this marked a breakthrough in the application of automated technology in 

manufacturing. And since then, an increasing number of robots as well as software and principles 

have been developed to serve and assist humans, such as: Shakey - The first mobile robot with the 

ability to perceive and reason about its surrounding environment [2], The collaborative production 

robot (coop-robot) capable of working alongside humans [3],… and many more. And with the 

advent of the Fourth Industrial Revolution, robots integrated with artificial intelligence can adapt 

to situations independently without the need for human assistance. Additionally, there are many 

robots integrated with the Internet of Things (IoT) that can easily acquire information and be 

remotely controlled via the internet. 

2.1.3 Brief development of ABB robotics. 

ABB (Asea Brown Boveri) is a global leader in technology, producing advanced products and 

solutions in automation, electrical systems, and industrial and energy sectors. ABB's growth and 

development have been an exciting and challenging journey. ABB began in 1988 when two 

electrical companies, ASEA from Sweden and Brown, Boveri & Cie from Switzerland, joined 

together. This made a big new technology company based in Zurich, Switzerland. Since then, ABB 

has grown fast and is now one of the world's top tech companies. Although ABB didn't originally 

focus on robotics but in order to keep up with the changes, ABB Robotics was established.  

ABB Robotics has undergone a successful and innovative development process over more than 40 

years. Starting from the early steps in the 1970s, focusing on developing industrial robots for the 

automotive and ceramics industries, to the emergence of cobots in the 2000s, ABB Robotics has 

continuously adapted to market trends and demands. In the new decade, especially from the 2010s 

onwards, ABB Robotics has focused on technology innovation, particularly in the fields of 

artificial intelligence and machine learning. ABB's intelligent robot systems have been developed 

with the ability to learn and interact with the surrounding environment, helping to optimize 

performance and flexibility in manufacturing. ABB Robotics' commitment to continuous 

innovation and improvement continues to play a crucial role in the development of the automation 

industry, delivering value to customers and the community. 



 

7 
 

2.2 Comunication technology. 

2.2.1 Industrial Ethernet and PROFINET 

• Industrial Ethernet 

Industrial Ethernet involves the use of standard Ethernet technology for communication within 

industrial automation environments. It provides a flexible, scalable, and cost-effective networking 

platform for connecting control devices, sensors, drives, and other equipment. This communication 

protocol carries several advantages such as: 

- Flexibility: Ethernet can support multiple industrial communication protocols, such as Modbus 

TCP/IP, EtherCAT, PROFINET, and EtherNet/IP. 

- Scalability: Ethernet can easily scale to meet the needs of increasingly complex automation 

systems. 

- Cost-effectiveness: Ethernet utilizes standard network components that are affordable and easy to 

install. 

- Performance: Ethernet can provide high-speed data transmission to meet the demands of stringent 

automation applications. 

- Reliability: Ethernet is a proven networking technology with high reliability. 

It can be seen that nowadays, there are plenty of choices regarding communication protocols. 

However, selecting the appropriate protocol to use involves various factors such as performance 

requirements, network structure, compatibility, and cost. In general, Industrial Ethernet is a robust 

and flexible network solution for industrial automation applications. With many advantages such 

as flexibility, scalability, cost-effectiveness, performance, and reliability, Industrial Ethernet is 

increasingly being widely used in various industries. 

  



 

8 
 

 

• PROFINET 

One of the most famous communication protocols: PROFINET, short for “Process Field Network”, 

is an industrial technical standard for transmitting data over industrial Ethernet. It is designed to 

collect data from and control devices in industrial systems, with particular strength in providing 

real-time data with tight timing constraints down to 1ms. In simple terms, PROFINET is a 

computer network used to connect automation devices together. It enables these devices to 

communicate with each other efficiently and reliably, helping improve the performance and 

productivity of automation systems. [6] PROFINET iself wields several advantages compared to 

other industrial networks such as: 

- Performance: PROFINET can transmit data at high speeds, reducing latency and improving 

response times. 

- Flexibility: PROFINET can be used with various network topologies, including linear bus, ring, 

and star topology. 

- Scalability: PROFINET can easily scale to meet the needs of increasingly large automation 

systems. 

- Standardization: PROFINET is a standards-based network, supported by various equipment 

providers. 

- Security: PROFINET offers advanced security features to protect data from unauthorized access. 

PROFINET operates based on the principle of providing deterministic and high-speed 

communication in industrial automation environments. To meet this requirement, PROFINET 

utilizes various communication channels such as TCP/IP, Real-Time (RT), Isochronous Real-Time 

(IRT), and Time-Sensitive Networking (TSN). For tasks that do not require real-time determinism, 

PROFINET uses TCP/IP or UDP/IP communication. However, to ensure determinism and high-

speed for time-critical applications, PROFINET employs RT communication. This communication 

directly transmits data from Ethernet Layer 2 to PROFINET through Layer 7, bypassing the 

TCP/IP layers to avoid latency. [7] 

 



 

9 
 

 

Figure 2.1: Operating principle of the PROFINET protocol. [7] 

PROFINET is widely used across various industries, including automotive manufacturing, 

machinery production, shipbuilding, food processing…and many more. In general, PROFINET is 

a robust and flexible industrial network that can be used for various purposes. It's an excellent 

choice for automation applications that demand high performance, reliability, and security. 

• Similarities and differences between. 

Regarding similarities, both IE and PROFINET uses Ethernet technology. This brings them several 

common benefits. Firstly, since Ethernet utilizes standard network component, they are affordable 

and easy to install. Secondly, Ethernet can provide high-speed data transmission to meet the 

demanding requirements of automation applications and lastly, Ethernet is a proven networking 

technology with high reliability. And alongside their similarities, IE and PROFINET also have 

their own distinguishing features, listed at the table below: 

 



 

10 
 

Indsutrial Ethernet PROFINET 

The popular network communication method 

used for building worldwide networks. 

The Industrial Ethernet solution is developed 

by PROFIBUS & PROFINET International 

(PI) 

Used to connect nodes within a LAN network. Used for exchanging data between devices and 

controllers. 

Resides above the physical and data link 

layers. 

Resides on the application layer of the 

ISO/OSI model as it's an application. 

The transmission speed is slower compared to 

Profinet 

Operates at a very high transmission speed 

compared to Ethernet. 

Table: Differences between IE and PROFINET. [12] 

2.2.2 Ladder programming language 

Ladder Logic (also known as ladder diagram or LD/LAD) is a programming language used to 

program PLCs (Programmable Logic Controllers). It is a graphical programming language for 

PLCs that depicts logical operations with symbolic representations. Ladder logic is created from 

logic ladder rungs, forming something resembling a ladder - hence the name "Ladder Logic" or 

"Ladder Diagram"." It is popular because it's easy to understand, visual, and simulates how 

mechanical relays work, helping programmers easily imagine and write control programs for 

automation systems. 

The rungs in a ladder diagram represent the supply wires of the relay logic circuit. There's a 

positive voltage supply rail on the left side and a zero voltage supply rail on the right side. In a 

ladder diagram, the logic flow is from the left rail to the right rail. The rungs in a ladder diagram 

represent the connections between the components of a relay control circuit. In the ladder diagram, 

symbols are used to represent the relay components. The symbols are placed in the rungs to form 

a network of logical expressions. When implementing ladder logic programming in a PLC, there 

are seven basic parts of the ladder diagram to know. They are the rung, ladder, input, output, logical 

expression, address/variable name symbols, and comments. Some of these elements are essential, 

and others are supplementary. 



 

11 
 

 

Figure 2.2: The basic structure of a PLC program. [11] 

• Rungs: The rungs are drawn as horizontal lines connecting the ladder rungs with logical 

expressions. In relay circuits, they represent the wires connecting the power source to the 

switching components (push buttons, switches, etc.) and relays. 

• Inputs: These are external control actions such as a pressed push button or an activated 

limit switch. The actual inputs are hardwired to the PLC terminals and are represented in 

the ladder diagram by normally open (NO) or normally closed (NC) contact symbols. 



 

12 
 

• Outputs: These are external devices turned on and off such as electric motors or solenoid 

valves. The outputs are also hardwired to the PLC terminals and are represented in the 

ladder diagram by coil symbols of relay. 

• Logical Expressions: Used in combination with inputs and outputs to form desired control 

operations. 

• Address Symbols & Variable Names: Address symbols describe the structure, defining 

addresses in the ladder logic memory for PLC inputs, outputs. Variable names are 

descriptions for allocated addresses. 

• Comments: Typically displayed at the beginning of each rung and used to describe the 

logical expressions and control operations the rung or group of rungs are performing. 

Understanding the ladder diagram becomes much easier by using comments. 

Symbols (Graphic Symbols) & Meanings in Ladder Logic: 

• Rung inputs on the left (contacts): 

      -[ ]-  Normally open (NO) contact: Inittialy in the open state when there is no signal or 

activating condition, meaning no current flows through it. When a signal or activating condition is 

applied, it switches to the closed state, allowing current to flow through it. 

      -[/]-  Normally closed (NC) contact: Inttially in the close state when there is no signal or 

activating condition, meaning current can flow through it. When a signal or activating condition is 

applied, it switches to the open state, cutting off the current. 

• Rung outputs on the right (coils): 

      -( )- Normally inactive: Intially inactive, active when current flows through its rung. 

      -(/)- Normaly active: intitally active, inactive when current flows through its rung. 

The main principle of ladder language operation is based on standard logic circuits such as AND, 

OR, NOT, and their variations such as AND/OR, OR/AND in combine with the rung inputs and 

outputs. Signals from the inputs are processed through these logic circuits to generate control 

signals at the corresponding outputs. The structure of a ladder program typically follows the 'scan 

cycle' principle in automatic control, where ladder rungs are executed in sequence from top to 



 

13 
 

bottom, and from left to right. Each scan cycle, input signals are read, and logic circuits are 

processed to determine the control signals at the corresponding outputs.  

A few logic operations that can be represented by ladder language include: 

 

Figure 2.3: AND – logic operation. 

• The AND logic: Presented by Input_1 and Input_2 placed in series on the circuit. In this case, if 

only one of these contacts is set active, there will still be no current flowing to the Output_1 or 

FALSE state. The Output_1 coil will only be activated if both Input_1 and Input_2 is set active or 

TRUE state. 

 

Figure 2.4: OR – logic operation. 

• The OR logic: Presented by Input_1 and Input_2 placed in parallel on the circuit. In this case, 

Just one of the two inputs needs to be set active for current to flow through the output or TRUE 

state. 

 

Figure 2.5: NAND – logic operation. 

• The NAND logic: Also known as the NOT AND gate, the NAND logic gate is the opposite of 

the AND logic is presented by the two NC Inputs. In this case, the Output will always be active 

or TRUE even if both inputs are inactive or at FALSE state. 

  



 

14 
 

 

Figure 2.6: NOR – logic operation. 

• The NOR logic: Also known as the NOT OR logic gate, the NOR gate is the opposite of the OR 

gate. In this logic, if one of the inputs is set active or TRUE state, the output will be inactive or 

FALSE state. 

One of the official and widely used PLC programming languages is the Function Block Diagram 

(FBD). It is a simple and graphical way to program any functions together in a PLC program, used 

to describe the function between input variables and output variables. A function is described as a 

set of elementary blocks. Input and output variables are connected to blocks by connection lines. 

Some of the commonly used function blocks such as: TIMER, COMPARATOR, COUNTER…. 

 

 

 

 

 

Figure 2.7: Timer Pulse (TP) function block. 

Overall, Ladder is an efficient programming language for simple to moderate automation systems. 

It is easy to learn, easy to use, and widely supported. However, it has limitations in handling 

complex programs and lacks flexibility compared to other languages. 

2.2.3 RAPID 

In the world of ABB robotics, the RAPID language serves as the primary programming tool. It 

bears a resemblance to typical ST (Structured Text) languages and shares close similarities with 

C-style programming languages. RAPID (Robot Application Programming Interface) is a high-

level programming language used to control ABB industrial robots. Introduced alongside the S4 

control system in 1994 by ABB, RAPID replaced the previously used ARLA programming 



 

15 
 

language. The RAPID language contains embedded functionalities that the robot can use. These 

embedded functions allow the robot to move to various locations (for example, "MoveL" is a linear 

move to a taught position). Some functions compute mathematical instructions or determine the 

robot's sensitivity to external influences. By utilizing the pre-existing functions within the RAPID 

library alongside controlling input and output signals, users can program and control the movement 

of various ABB robot models, ranging from industrial robots to cobots, delta robots, and SCARA 

robots. 

Due to its many similarities with the C language, RAPID is quite user-friendly, making it accessible 

even to beginners who can quickly familiarize themselves with it. Moreover, with its diverse 

library, RAPID offers users plenty of tools to address applications ranging from simple to complex, 

thereby saving cycle time and enhancing robot operational productivity. Furthermore, with a large 

user community, abundant instructional materials, and supportive tools available, users can easily 

seek assistance when needed. 

 

Figure 2.8: Basic programming language of RAPID. 

  



 

16 
 

2.3 Main hardware 

2.3.1 IRB1100-4/0.475 

• Overview 

The IRB 1100 is one of the latest generation 6-axis industrial robots from ABB Robotics. With a 

compact design and a payload of up to 4kg, it is suitable for versatile applications and can 

communicate with various external systems. This robot arm can be installed in three different 

mounting: floor mounted, wall mounted, and it even suspended and there are no limitations on the 

angle of each mounting position. For each different mounting position, the robot's components will 

experience varying loads during operation, including forces in the XY direction, forces in the Z 

direction, as well as bending torque in any direction within the XY plane and the Z plane. With its 

emergency stop feature, the IRB 1100 robot will automatically halt its operation when subjected 

to forces exceeding the maximum allowable limit, thereby ensuring the safety of users and 

prolonging the robot's lifespan. The temperature range for the robot to operate over extended 

periods without affecting its lifespan is from 5 to 45 degrees Celsius under the condition where the 

maximum ambient humidity does not exceed 95%. And since the IRB1100 used for the screw-

driving system is floor mounted, only the corresponding numbers are considered. 

 

Figure 2.9: Endurance and maximum load for floor mounted configurations.[4] 

• Dimensions and working range. 

The figures below show the dimensions and the working range of the IRB1100 version 0.475. 

Numbers are in milimeters. 

- Dimension: 

  



 

17 
 

 

- Working range  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Dimension and working range of IRB1100.[4]  



 

18 
 

• Calibration. 

Calibration is a step to standardize the axes of ABB robots. The purpose of this is to establish the 

standard coordinate origin of the robot and bring the robot to the zero position, meaning that the 

rotation angle of all axes is 0 degrees. The robot cannot start operation until it is calibrated because 

at this point, the linear movement, orientation features, as well as teaching new positions are fullly 

disabled. Only when calibrated, those features can be used again. The robot will only be able to 

move along each axis independently when not calibrated. This is to help users move each axis to 

the marked calibration positions called the “Synchronization marks”.  

 

. 

  



 

19 
 

 

 

 

 

 

 

 

 

 

Figure 2.11: Synchronization marks and each axis’s movement directions of IRB1100.[4] 

 

2.3.2 Omnicore E10 

• Overview 

Omnicore is an advanced line of controllers by ABB specifically designed to control various types 

of robots in a variety of applications. This product line offers a range of advanced features and 

technologies to optimize performance and flexibility in the manufacturing process. And being an 

advanced product line, the Omnicore controller includes some standout features compared to 

previous models, a few of them includes: 

- Safe Collaboration Capability: This allows robots and humans to work together without the need 

for traditional safety measures like safety fences. 

- Easy Integration: Omnicore can easily connect with other systems and devices through standard 

networking. 

- Efficient Data and Program Management: This controller efficiently receives and stores 

production programs, optimizing programming and job changes flexibly. 

- Integrated Artificial Intelligence: By integrating AI, the robot can learn and optimize 

performance over time. 



 

20 
 

Omnicore is indeed the brain of the robot, as it not only performs basic functions like starting or 

shutting down the robot, controlling the speed with motor,… but also serves as the storage location 

for programs uploaded by users and many more. With its advanced features and technologies, it 

plays a crucial role in enhancing productivity and flexibility in modern manufacturing 

environments. 

 

Figure 2.12: ABB’s Omnicore-series controllers. 

• Omnicore E10 

Omnicore E10 is one of four versions of this product line, and it is also the controller used to 

operate the IRB1100 of the scew-driving station. With it’s compact design with a width of 445mm, 

length of 340mm, and height of 100mm, this version can be easily transported and installed, 

without taking up too much space in the station's layout. All connection ports, including the HMI 

port, WAN port, LAN port, ports for additional I/O modules, as well as the connection for the 

FlexPendant teaching device, are located close to each other on the same side, facilitating 

convenient connection and usage. Similar to the IRB1100, the ideal temperature range for 

Omnicore operation is from 5 to 45 degrees Celsius. The connection of the controller is as follows: 



 

21 
 

 

Figure 2.13: Omnicore E10 and connection ports. [5] 

 

Node Description 

A Power inlet switch 

B Power inlet connector 

C Manipulator signal connector (SMB) 

D Motor connector 

E I/O interface 

F FlexPendant adaptor connector (HMI) 

G, H WAN1, WAN2 port 

J Customer safety interface 

K Device port 

L Management port 

M External 24 V power inlet connector 

Table: Connection ports of Omnicore E10. [5] 



 

22 
 

 

Despite the numerous connectivity ports, once installed by ABB Robotics, our primary concern 

revolves around the location of the power node 'A' , the management port ‘L’ from which we will 

load programs into the robot and the device port ‘K’ that will be used to connect the external board 

DSQC 1030. 

2.3.3 FlexPendant 

The FlexPendant is a handheld device directly connected to the Omnicore controller. It is the 

device that users will directly interact with to control ABB robots, run and modify robot’s programs, 

and many more. The FlexPendant is made to work continuously in a challenging industrial 

environment. Its touch screen is splash-proof, water-and oil-resistant, and simple to clean. 

Consisting both the hardware and software, the FlexPendant is a complete computer by itself. It is 

connected to the Omnicore controller by an integrated cable and connector. 

 

Figure 2.14: ABB’s Omnicore FlexPendant 

  



 

23 
 

 

 

 

 

 

 

 

Figure 2.15: Main parts of FlexPendant. [5] 

The joystick (4) will be used to move the robot. This action is call jogging the robot. There are 

several different jogging methods such as jogging along each axis of the robot, linear jogging, and 

orientation jogging. However, initially, only jogging along the robot's axis is possible. Linear and 

orientation jogging can only be used once the robot has been calibrated. The reset button (5) is 

pressed if the FlexPendant freezed during usage. Resetting the FlexPendant via the reset button 

does not reset the controller's system. 

  

1 Connector 

2 Touch screen 

3 Emergency stop button 

4 Joystick 

5 USB port and reset button 

6 Three-position enabling device 

7 Thumb button 



 

24 
 

Every button in the hard button panel on the right side of the Flexpendant has its own specific 

functions. Among the total of 12 buttons, there are 4 buttons that currently have no function 

assigned to them. Users can assign functions to them according to their own needs. 

 

 

Figure 2.16: positions of the hard buttons on the Flexpendant. [5] 

For the upper set buttons, if there are more than 1 mechanical unit being controlled by Omnicore, 

button number (1) will be used to select between those units. To toggle between jogging linear and 

orient, we use button (2). And to toggle between jogging the axis 1-3 or axis 4-6, button (3) will 

be used. The button number (4) is to show the operator’s messages. For the lower set buttons, 

pressing button (9) will execute the program that is curently loaded in the controller’s system, and 



 

25 
 

button (11) to stop it. Button (10) and (12) will only execute one instruction backward and forward 

from the current program’s pointer. The remaining four buttons (5,6,7,8) are the user-defined 

buttons. 

The three-position enabling device (6) is a button that the user needs to press and hold to start the 

robot's motor. Only then can the user begin jogging. This device has two different pressure modes. 

If the user applies moderate force to press it, they will enter the motor ON mode. However, if they 

press harder or release it completely, it will be in motor OFF mode. The figure below shows how 

users can hold the FlexPendant. Since the display screen can be rotate easily, user can both hold 

the FlexPendant on their left or right hand.  

 

Figure 2.17: holding the Flexpendant. [5] 



 

26 
 

The touchscreen of the FlexPendant represents the icons in a very intuitive and understandable 

manner. With its sufficiently large design, users can comfortably perform their touchscreen 

operations without worrying about being obstructed. 

 

Figure 2.18: Main screen of FlexPendant. [5] 

The main interface of the FlexPendant screen can be grouped into three main sections: A, B, and 

C as follows. Users can tap on Applications (A) at any time and at any window to return to this 

main screen that we will called Home screen. The status bar (B) will allows users to monitor the 

current robot’s status, including the operator’s message, event log, motor’s status and more. The 

applications (C) that are required for operating the robot system are available in the Home Screen.  

 

 



 

27 
 

 

2.3.4 DSQC 1030 

The DSQC 1030 is a basic digital IO module developed by ABB, one of the leading names in the 

automation industry. This module is primarily used for controlling and communicating with other 

automation devices and systems within a complex network. The device is a part ABB's Scalable 

I/O system, designed for industrial robots. This device provides digital inputs and outputs for 

industrial control systems. It is used in various automation applications, including industrial robots, 

assembly lines, and material handling systems. It boasts advantages such as a compact and sturdy 

design, easy installation and use, high anti-jamming level, and support for multiple communication 

protocols. 

 

       Figure 2.19: DSQC 1030 

our station will utilize this DSQC 1030 module to provide I/O for communication between the 

robot and the PLC system. The location of connecting ports of the device is shown below: 

 

Techical data of the DSQC 1030: 

- Number of I/O: 32. (16 input and 16 output) 

- Type of signals: Digital. (TRUE/FALSE) 

- Operating voltage: 24V DC. 

- Current consumption: 5A 

- Operating temperature: -20°C to +60°C 



 

28 
 

 

Figure 2.20: DSQC 1030’s connection ports. [9] 

2.3.5 PM583 - ETH 

The PM583-ETH is a programmable logic controller (PLC) belonging to the AC500 series by ABB. 

It's designed to offer robust, flexible, and cost-effective automation solutions for various 

applications. It is designed to simplify automation tasks with its powerful 32-bit CPU and ample 

1MB program memory. It supports common communication protocols like Ethernet, Modbus, 

PROFIBUS, and CAN, ensuring easy integration into various setups. You can easily expand its 

capabilities with extra I/O modules. Plus, its user-friendly programming interface, along with the 



 

29 
 

intuitive ABB Automation Builder software, makes it a straightforward choice for automation 

needs in different industries. Below are some technical specifications of this device: 

 

 

Figure 2.21: Technical data of PLC PM583-ETH 

 

 



 

30 
 

 

 

2.3.6 Robot’s tool 

In this station, the robot's tool head is a mechanical product designed and manufactured by ABB 

Robotics. The upper part of the tool head has a square piece angled relative to the rest to connect 

to the robot's axis 6 through the screw holes in the circular area. The screwing head is mounted on 

a bracket placed on a slider, allowing vertical adjustment to change the depth of the screwing head 

during screwing operations. The lower part is designed to resemble a duck’s beak, with a small 

angled hole to guide the screw down from the screw feeder to the screwdriver head. When the 

screwdriver’s head rotated and pressed down, the duck’s beak will be opened, allowing the screw 

to be twisted down on the workpiece. 

 

Figure 2.22: Tool’s head decription. 

This tool is designed to be large and sturdy to ensure no shifting or vibration during operation and 

robot movement, thereby ensuring the station's efficiency. However, due to its large size, we must 

ensure the robot's path and angles of rotation to prevent the tool from colliding with other parts 

during operation. 



 

31 
 

2.3.7 Other devices and screwing principle. 

In addition to the main hardware and software that we will primarily use to program and operate 

this screwing station, there are also electrical and mechanical devices surrounding it. These devices 

directly contribute to the screwing process: the Zeda MKS2100MV automatic screw feeder, and 

the Hios BLFQ-2000 electric screwdriver and air hoses to serve the purpose of supplying and 

screwing screws into the workpiece. While the Omron E3Z-T61A-L optical sensor, and the 

SY3120-5LZD-C6 solenoid valve will be ultilized by PLC to control the robot’s movement. 

  

Figure 2.23: The Zeda automatic screw feeder and the Hios screwdriver head. 

 The working principle of the screw-driving process is as follows: When the workpiece is secured 

and the robot moves to the screwing position, a signal is sent to the PLC, triggering another signal 

to the screw feeder to supply a screw. The screw is then conveyed from the feeder to the screwing 

tool head using air pressure. After the screw is in position, another signal will be sent back to the 

robot to move into work position, and lastly the electric screwdriver receives a signal to start 

pushing the screw down and screwing it into the workpiece. The idea is based on the Vacuum 

screwdriver with automatic feed system SEV of WEBER. 

  



 

32 
 

Chapter 3. PROGRAMMING ROBOT’S MOVEMENT 

3.1 Operating principle 

According to the proposal from ABB Robotics, the robot must meet the following requirements: 

the robot itself has to move to the Home position from any position when the user presses the start 

button to run the program. Then, the robot will execute a simple process of moving down and 

releasing any excess screws stuck in the tool (if any), then return to the home position. After that, 

the screwing process can begin. 

The operation process of the screwing process is as follows: The purpose of the two conveyors 

with built-in cylinder, one for lifting and one for lowering the workpiece, is to move the workpiece 

in a closed loop to simulate the production line in the actual factory, where different workpieces 

will be sequentially brought in for screwing. In this demo station, the workpiece will be placed on 

the lifting conveyor on the left side. After the robot finished checking any excess screw, the placed 

workpiece will be lifted it up until the Omron sensor detects a signal. Then, conveyor system will 

move the workpiece toward the work position where there will be another sensor to detect when 

the workpiece passed through and the stopper will pull up to stop the piece from continue moving, 

along with a fixturing mechanism to pull the workpiece up from the conveyor and in working 

position. Once the workpiece is fixed in place, another signal is sent by the PLC to the robot to 

indicate that the workpiece is ready for screwing. And then robot will start to work. 

The robot’s movement will be as follows: Robot will start to move to the first position. But before 

it reaches for the exact position, it will first stop at the offset position. Once the robot is at that 

offset location, it will send out a signal to let the PLC knows to make the screw supplier start to 

supply one screw to the tool. And when the screw is ready at the tool’s head, the robot will move 

from that offset position to the work position, then the tool will start to push and turn the screw 

down into the place. Once the screw is in place, robot will move the tool’s head back to the offset 

position and then move to the next position, where the process will be repeated until the whole 

workpiece is finished.  The flow chart below illusrates the working logic of the robot in the auto-

mode. 



 

33 
 

 

Figure 3.1: Flow-chart of robot’s movement 

 

 

 



 

34 
 

3.2 Robot programming 

3.2.1 RobotStudio software 

To programming and operating ABB’s robots, user will have to familiarize themselves with the 

software ABB RobotStudio. RobotStudio is a versatile and powerful tool for building, developing, 

and programming industrial robots thanks to its extensive collection of capabilities. Several 

features that can be mentioned include: 

• 3D Robot Simulation: Accurate and realistic simulations are made possible by the ability 

to generate intricate 3D models of industrial robots and the environments around them. 

• Offline Programming: With RobotStudio, offline programming is made easier, allowing 

users to create and improve robot programs without requiring a physical robot. In the 

development stage, this helps save time and resources. 

• Path Optimization: The software enables users to optimize robot paths for improved 

efficiency and cycle time. This helps in enhancing the overall performance of robotic 

systems. 

• Collision Detection: RobotStudio includes collision detection features, allowing users to 

identify and resolve potential collisions in the virtual environment, minimizing the risk of 

issues during actual operation. 

• Support for Various Robot Models: The software supports a wide range of ABB robot 

models, making it suitable for different applications and industries. 

In summary, RobotStudio serves as a comprehensive tool for the entire lifecycle of industrial robot 

implementation, from design and simulation to programming, testing, and optimization. Its 

capabilities contribute to increased efficiency, reduced costs, and improved overall performance 

in robotic automation processes. 

3.2.2 Creating robot’s movement 

• Mapping signal. 

Mapping signals is a simple task yet holds significant importance in the operation of our screw-

driving station. Since the robot and PLC uses two different sets of outputs and inputs: Robot uses 

DSQC1030 board and PLC uses I/O buses DI524 and DO524. We have to know for example, an 



 

35 
 

input of the robot corresponds to what output of the PLC and vice versa, so that we can put in the 

correct signals in our RAPID code and PLC program. Below are the figures of the electric path 

circuit of the Input and Output signals between the robot and PLC, note that the only difference is 

ABB robotics has replaced the DSQC 652 board into the current DSQC 1030, while all the wiring 

and path remains the same. 

 

 



 

36 
 

 

 

Figure 3.2: Electric path circuit between robot’s I/O board and PLC I/O bus. 



 

37 
 

 From the figures, we can easily find out what signal of the DSQC 1030 board connects to what 

signal on the PLC I/O bus. Note that even though the electric circuit above use the numbers from 

1 to 16, the mapping for the DSQC 1030 I/O starts from 0 and ends at 15, which means that the 

‘RB_OUT1’ will be mapping 0 on the DSQC 1030 output list and so on. The mapping process will 

be as follows: the ‘RB_OUT1’ is the output of the robot that corresponds to mapping 0 on the 

DSQC1030, will be connected to the ‘DI524-2-I2’ of the PLC bus and so on. To be more specific, 

later on when I program the RAPID to pulse out a signal called ‘do08_WorkPosition’ which is an 

output that I put on mapping 8 of the DSQC1030 board, this is the robot’s output ‘RB_OUT9’ and 

connected to the PLC’s input ‘DI524-2-I18’, and this output will jump into true in the PLC 

program. 

• Creating new tool in controller 

Each time a different tool is attached to the robot, we need to inform the robot of the exact position 

of that tool head. Only then can we prevent errors during movement and avoid the risk of the tool 

head colliding with the workpiece and surrounding components. In the default state, the IRB1100 

robot will have tool0, and the position of this tool is located at the center of axis 6. And when 

connecting the tool to the robot, we want the robot knows the tool’s center is not at the bottom of 

the duck’s beak part instead of the original location. The 3d model below shows the position of the 

tool0 and the position of where we want the robot to acknowledge as the new tool center. 

 

Figure 3.3: tool0 and new tool’s position. 



 

38 
 

In order to do this, I need to use the FlexPendant to teach the robot about the new tool position. 

This process is called creating new TCP (Tool Center Point). First, from the main interface of the 

FlexPendant I will go into Calibrate. From there, I tap on       and select Tool. This will show me 

the list of all tools currently in the controller right now. From then, I tap on                                        and  

then putting in the name, expected mass and center of gravity. After finishing all the input data, I 

can hit the ‘Apply’ for the tool to be shown alongside the tool0. In this station, I named my new 

tool’s TCP is ‘MyTool’. 

            

           Figure 3.4: Inputing data for new tool.    

The next step is from the list of tools, I tap on ‘…’ From the newly created tool and tap define, this 

will lead me into the wizard to define the new TCP. 



 

39 
 

  

 

 

Figure 3.5: Tool TCP Definition wizard. 



 

40 
 

To define a new tool TCP, I have to locate three or more different point and one point different in 

Z direction. The requirement for the three points are as follows: All three must have the tip of the 

duck’s beak, where I want my TCP to be, pointed to an exact position, but they have to have 

different orientation. The point different in Z direction can be from any of those three, it’s purpose 

is to specify the Z direction of the TCP. Once I have finished creating the tool TCP, it’s positions 

will be shown alongside with the tool0. I can double-check if my tool TCP is created correctly or 

not by jogging the robot in orient mode with the TCP is the one I’ve just created. Simply goes into 

the ’Jog’ window from the FlexPendant’s main interface, selecting Jog Mode: Reorient and select 

the tool as ‘MyTool’ and start jogging, if the whole robot’s axis move when I jog but the position 

of my tool TCP stays still, that means I have created the correct TCP. 

  

Figure 3.6: Jogging window of FlexPendant. 

• Establish RobotStudio connection. 

My main method of programming the basic’s movement is through the software RobotStudio. The 

first thing I need to do after opening the software RobotStudio is to connect a LAN wire from my 

laptop’s ethernet port toward the Omnicore controller’s MGMT port. This will establish a 



 

41 
 

connection between the software and the robot. Once done that, from the initial window of 

RobotStudio I will go into the “Online” tab and click on “One Click Connect”. 

 

Figure 3.7: Initial interface of RobotStudio 

If the connection is established successfully, there will be a small login box asking to type in the 

username and password, or choose to log in as a default user. I will choose to log in as a default 

user then continue to work on programming. If there is an error box saying that: “No controller 

found on management port”, there are two reason for this. First reason is the LAN wire is being 

loose from the connecting port, I can simply fix this by making sure the wire is tightly attached. 

The second reason is my PC is having a different IP address from the Omnicore controller. 

Normally, these controllers are given the IP address of 192.168.125.1, so what I have to do know 

is make sure my PC having the address of 192.168.125.x, with x is the different number from 1. 

To do this, I go into my ‘Control Panel’, find ‘Network and Internet’ then ‘View network status 

and tasks’, and finally ‘Change adapter settings’. From here, double click on Ethernet and find the 

TCP/IPv4. Instead of letting it obtain the IP address manually, I will manually input the IP address 

as follows: 



 

42 
 

 

Figure 3.8: Configuring IP address for PC. 

Clicking OK after this and click “One Click Connect” on RobotStudio again, this time it should 

be good to go. Once I’m in the below window, that means the RobotStudio software is ready to 

work. 

 

Figure 3.9: Main programming window of RobotStudio. 

 



 

43 
 

• Programming language 

The operating principle of the program in RobotStudio is quite simple and accessible. Robot’s 

movements, signals pulsing and many more can be break down into different processes. Each 

process can represent one or more fucntions that depends on the user and can be name however 

we want. Robot will only proceed to run what lies in the ‘main’ process part of the RAPID. A 

general structure of a process is as follows:  

PROC rMove() 

MoveJ HomePosition, v200, fine, mytool\WObj:=Wobj0; 

ENDPROC 

The sample code above presents a process with the name of ‘rMove’, starting from the ‘PROC’ to 

annouce the start and naming of a new process, and ended at ‘ENDPROC’. The content of this 

process is to perform an action of moving the robot’s tool TCP ‘MyTool’ to the position defined 

with the name ‘HomePosition’. V200 is speed data and indicates that the speed of this move will 

be 200mm/s, and fine is the zone data. This data can have different values such as z0, z5, z10, z 

20,… and will represent of how smooth the robot will move from one point to another. The lower 

the value is, the closer the TCP has to be from the actual programmed position before it can 

continue to move toward another position while the higher value allows robot to fly-by that 

position.  

 

Figure 3.10: Zone-data explanation. 



 

44 
 

Wobjdata is used to describe the work object that the robot welds, processes, moves within, etc. 

And in the screwing station, we use the default wobj0. This work object takes the center of the 

base of IRB1100 as the 0,0,0 point and has the directions as follows: 

 

Figure 3.11: Direction of wobj0. 

Another important thing that I have to take into consideration is the Input and Output signals. This 

will plays a crucial role in the communication between the robot and PLC. Using signals will have 

the PLC controlling the current action of the robot, and vice versa, so that the two will be able to 

work in union. And thankfully, the DSQC1030 is here for us to solve this problem. With up to 16 

inputs and 16 outputs, we have plenty of signals to work with. To create signal, I click on the I/O 

system which can be found on the left side of the screen, and choose ‘Signal’ from the categories.  



 

45 
 

 

Figure 3.12: Creating signals. 

Signals coming from the DSQC 1030 will be displayed with the ‘Local_IO1’ in their ‘Assigned to 

Device’ and ‘DSQC 1030’ in their identification Label. And I will modify their into my desired 

names. To modify, right click on the correspond signal I want to change and changing their name 

and choose ‘Edit’, a window will pop out for me to type in the name. The figure below shows all 

the signals that will be used in my program. 



 

46 
 

 

Figure 3.13: All signals created. 

The position values in the RobotStudio is called ‘robtarget’, short for robot targets. And the basic 

syntax to create a robtarget variable in RobotStudio is: 

CONST robtarget p1 := [ [x,y,z], [q1, q2, q3, q4], [cf1, cf2, cf3, cf4], [eax_a,eax_b,eax_c,…,eax_f] ]; 

The three x, y and z will be the coordinate of the target in the xyz plane accordingly, while the q1 

to q4 will present it’s rotation angle through the quaterion angles, and the cf1 to cf4 will represents 

how the rest of the robot’s axes will behave when the tool’s TCP moved to that target. For example 

in the figure below, the axis 4 of the robot can either have the rotation of 0 degree or 180 degree 

depends on the configuration selected.  

 



 

47 
 

 

Figure 3.14: different configurations for a target 

Though usually, I will not create these target by typing the syntax in like this. Instead, I will just 

create a random target using the ‘Target’ function in RobotStudio by my PC first. And then, I will 

use the FlexPendant to teach the robot where I want my target to be, and all the numbers will be 

updated into the syntax automatically. 

 

Figure 3.15: Creating target (1). 



 

48 
 

The ‘Target’ function can easily be spotted from the Home tab. Click on that and choose ‘Create 

Target’, a window will pop out and I can click on everywhere on the 3D view window, the location 

will be updated into that window and when I hit create, the target will be created. 

 

Figure 3.16: Creating target (2) 

The next step is to create a reference path or a process so I can upload the target on it and then load 

it into the controller, since only until then the RAPID will have the information of the target. To 

do this, I click on ‘Path’ right next to ‘Target’ and choose ‘New Path’. A path will then be created 

with the default name of ‘Path 10’. After that, I simply drag the newly created target into the path, 

and finally using Synchronize to update the target into RAPID. 



 

49 
 

 

 

Figure 3.17: Synchronizing targets into controller 

• Teaching processes and controlling targets 

Once finished all the step, the RAPID program will now has the target data. From now on, 

whenever I want to create a new target, I can just copy the variable and paste it again while giving 

it a new name. I will also put all of the created targets into a seperated process called ‘Teaching’. 

For example like this: 



 

50 
 

 

Figure 3.18: Process ‘teaching’. 

Even though this process will contains several moving function only, it’s purpose will not be 

moving robot but instead for me to teach the position of different targets I put in here. To teach a 

new target, first I jog the robot’s TCP to wherever I want the target is at. Then from the FlexPendant, 

I go into ‘Code’ and find the process ‘Teaching’. For this example, the process ‘teaching’ is in 

Module 1, which is a default name of a module in RobotStudio. 

  

 

Figure 3.19: Finding process ‘teaching’ in FlexPendant 

Once the tool’s TCP is in my desired position, I update it by tapping on the target’s name in the 

move syntax, and tap on ‘Update Position’. I can always check the variable in the RAPID code to 

see if the position is updated or not. 



 

51 
 

 

Figure 3.20: Updating position. 

According to the programming standard of ABB Robotics, the ‘Teaching’ process is a very 

important one that needs to be there for user to control their robot targets. Since there would be a 

lot of targets that will be made as the programming goes, scatterted in many different modules and 

sub-processes and it might take a lot of time just to locate where a position is in the program. So, 

grouping all the targets into one process is an efficient way to control. 

To move the robot to a taught position, I tap on ‘Debug’ and find ‘Go To Position’ under ‘Move 

Robot’ section. Then while keeping the motor on by holding down the three-point enabling device, 

I tap and hold the ‘Press and hold to Go To’ to make the robot moves to that position. 

 

Figure 3.21: Moving robot to a taught position using FlexPendant. 



 

52 
 

• Other processes. 

Once everything is ready, it’s time for me to start programming the robot’s movement. To ensure 

the program is completely refresh everytime, I have to make the robot to move back to it’s 

‘HomePosition’, as well as reseting every signals. This calls for an ‘Initial’ process. In this ‘Initial’ 

process, I will make sure the two signals: ‘do10_robotworking’ and ‘do11_Path1Done’ is set back 

to false as well as creating different possible paths for the robot to move it’s TCP back to 

‘HomePosition’. The ‘HomePosition’ can be understood as the resting position of the robot before 

shutting down the power and it also the position at the beginning of the screwing process. 

 

             Figure 3.22: process ‘Initial’. 

The zone process is to create different world zones. For each zone, there will be another path to 

move the robot’s TCP back to HomePosition. This is to simulate the real-life scenario when there 

might be objects blocking the path in each zone, so if I use the function to move the TCP back to 

Home by default, it could has some problem like the tool will collide with some object, that’s why 

I have to create zones and different paths. And since the ‘zones’ process can only run one time for 

the zones to be established, the IF function is there to make sure the process will not run multiple 

time since it would cause error. 

To create zones, first I need to create some variables. These variables will each store a position in 

it and will be used to make a zone later on. In RobotStudio, there are two different kind of zones: 

Sphere and box, and this program will take into account both of them. Sphere zone is created by 

choosing a position as the center of the sphere and choosing a radius, the zone will then be created 

with those two information. Box zone on the other hand, is formed by two position indicated Two 

diagonally opposite corners of a rectangular box. They are presented in the RAPID language as 

follows: First, I create the variable to store the position in. In this station, I divided the space in a 



 

53 
 

total of three zones, two box-shaped and one sphere. The two box-shaped zones will be on the 

front left and right of the robot, while the sphere will obviously be around the ‘HomePosition’. 

  

Now that the variables is ready, I will start making the zones. For the sphere zones around the 

HomePosition, the syntax is as follows:  

 

The first line is to transfer the position of my ‘HomePosition’ into the ‘pHomepos_SD’ variable, 

which means the ‘pHomepos_SD’ now will have the exact same position as my ‘HomePosition’. 

The second line is to define a sphere zone with the name: ‘HomeZoneShape1_SD’ which takes the 

‘pHomepos_SD’ as the center and the radius up to 100mm from that center. The last line means 

that whenever the TCP moves into that zone, it will set the signal ‘DO_pHome_SD’ to 1, else it 

will stay as zero. Simliar to this, I create two more rectangular zones and put them in a process as 

follows:  

 

Figure 3.23: process ‘Zones’ 

→ Variables for create sphere. 

 

→ Variables for create box zone 1. 

 

→ Variables for create box zone 2. 



 

54 
 

Next up, the process ‘rHome’ will indicates how the robot will move back into the ‘HomePosition’. 

In this process, I use the IF function which is pretty straightforward. The robot will have three 

different ways to move back to the ‘HomePosition’ depending on what signal is being active. And 

that concludes my ‘Initial’ process of the program. 

 

Figure 3.24: process ‘rHome’. 

After the ‘Initial’ process, the robot will start its first movement. As mentioned before, the robot 

will have to make sure there are no screw stuck inside the tool before starting a new work process. 

To do this, I will name this process ‘ScrewChecking’. The content of this process is: 

 

Figure 3.25: process ‘ScrewChecking’. 

It can easily be seen that the process is a group of basic move function along with controlling the 

signals, with the ‘pDrop’ is the position lies above the ‘Drop’ or ‘pDrop’ is the offset position of 



 

55 
 

‘Drop’. The robot will moves its TCP from ‘HomePosition’ to ‘pDrop’ and then ‘Drop’, the 

‘waittime\Inpos, 0;’ means that the system will have to wait until the TCP reached ‘Drop’ and not 

any moment before, to pulse out the signal ‘do14_drop;’ toward PLC. PLC then will make the 

screwdriver tool to pushes down, releasing excess screw (if any) and then pulse out a signal to 

robot. Robot will wait for this signal to know that the screwdriver has finished the process of 

releasing excess screw and then move back to ‘HomePosition’, which concludes the process 

‘ScrewChecking’. 

The output signal ‘do15_Dropped’ is to let the PLC knows the ‘ScrewChecking’ process is done. 

Once receiving this signal, the workobject will then be delivered from the starting location toward 

the working position. Once the object arrived, the stopper as well as the fixture mechanism will 

move up, stopping the object from continue moving as well as fixing it to place. Another signal 

will also be sent back to the robot, informing that the object is now fixed and robot can start 

working on it. The object has a total of 28 screw points and located as follows: 

 

Figure 3.26: Workobject screw’s location. 

There are 21 points lie on the horizontal plane 7 points lie on the inclined plane. They will be 

divided into 7 processes in which I will name them from ‘rPath1’ to ‘rPath7’, and each process 

will include three points from the horizontal plane and one from the inclined plane: 

  



 

56 
 

 

• Path 7:          7  8    21  22 

• Path 6:          6  9    20  23 

• Path 5:          5  10  19  24 

• Path 4:          4  11  18  25 

• Path 3:          3  12  17  26 

• Path 2:          2  13  16  27 

• Path 1:          1  14  15  28 

For path 1, my process will be as follows: 

 

 



 

57 
 

 

Figure 3.27: process ‘rPath1’ 

As mentioned above, when the stopper and fixture mechanism fix the workobject in place, it will 

send out a signal which the robot will receive as ‘di10_ConvStopped’. When receive this signal, 

the robot itself will also set out a signal ‘do10_RobotWorking’ to the PLC, annoucing that it will 

start its process now. After that, robot will start moving the TCP to the first location of path 1: point 

1. But it will first stopped at the offset position of point 1, which is 5mm above the z-axis. This is 

displayed in the RAPID as the ‘Offs(Work_1,0,0,5)’. Another set of signals: ‘do07_HoverPosition’ 

and ‘do01_RB_ScrewSSP’ will be pulsed to annouce PLC that the tool is in the waiting position 

and ready to be supply with a screw now. After a screw from the supplier is supplied to the tool’s 

head, PLC will give out a signal ‘DI_RB_SCREWPASS’ to let the robot now it has finished 

supplying, and the robot will continue moving downward the work location (line 15). Once the 

robot’s TCP is in the work_1 position, it will pulse a signal ‘do08_WorkPosition’ back to the PLC 

so the screwdriver head will start driving the screw into location. And once the screw is tightly 

fixated into place and the screwdriver is forced to stop by the force sensor at the head of the 

screwdriver, PLC will sent the signal ‘DI_RB_SCREWed’ back to the robot, annoucing it to move 

back upto the offset position and finished the sub-process of screwing one location. I will then 



 

58 
 

repeat the code with three more location: 11, 15 and 28 and at the end of point 28, I will reset the 

signal ‘do10_RobotWorking’ again so the PLC knows the robot has finished the ‘rPath1’ process 

and allows the workpiece to go for another turn on the conveyor before continue ‘rPath2’. This 

action is as I mentioned before, to simulate the real-life production line when many objects will be 

deliver by the conveyor to the robot. 

I will also create the rest of ‘rPath2’ to ‘rPath7’ with the same syntax, while at the very end of 

‘rPath7’ when the robot finished position 22 and the signal ‘do10_RobotWorking’ is reset, I will 

also pulse out the signal ‘do11_Path1Done’ to let the plc knows the robot has fully completed the 

whole process. 

 

                     Figure 3.28: Ending of ‘rPath7’ 

Now that all the sub-processes has been made, the next thing I need to do is to put them all together 

and forming a complete process serving screw-driving purpose. I will name this process 

‘ScrewDriving’ and create a variable called ‘sum’. ‘Sum’ will take the value of zero at the 

beginning and the ‘ScrewDriving’ process will be as follows: 



 

59 
 

  

 

Figure 3.29: process ‘ScrewDriving’ 



 

60 
 

Simply, the robot will start running ‘ScrewChecking’ the ‘rPath1’ process first and once it’s done 

the value of ‘sum’ will be plus 1, and then the sum will be one which will make the robot to start 

‘rPath2’ and so on until the ‘rPath7’ is finished. And as stated above, RobotStudio will only runs 

the processes that are lie in the main part of the program. So once I finished with all my process, I 

have to put them all into the main part of the program, this one contains the ‘rInitial’ process and 

the main process ‘ScrewDriving’: 

 

Figure 3.30: process ‘main’. 

One advantage of creating different processes is that the main program will be very neat and tidy, 

making the entire program more organized. I also can easily see where changes need to be made 

if I want to modify or adjust the program. 

After finishing the programing process, the last thing I need to do is to teaching the exact screwing 

positions for the robot. To do this, I first go into the teaching process I named ‘teachpoint’ where 

I already put in there 28 moving function for 28 targets. Then, I will perform the same steps stated 

in the “Teaching Process” section to teach my work positions. All of the work positions will be 

taught 5mm above the threaded-hole to ensure the no-collision between the tool’s duck-beak and 

workpiece, thus avoiding damage to both components. 



 

61 
 

 

            Figure 3.31: Process ‘teachpoint’ 

  

3.3 PLC programming 

ABB Automation Builder is the main PLC software for our demo station. Steps to operate the 

software are also simple. At the very beginning after launching the software, I will see the home 

screen as follows: 



 

62 
 

  

         Figure 3.32: ABB automation Builder home screen. 

Click on ‘File’ → ‘New Project’ on the tool bar or simply ‘New Project’ from the ‘Basic operations’ 

section to start a new project. A small window will pop up for me to select the save location, name 

of the project as well as the hardware selection. 

 



 

63 
 

 

Figure 3.33: Configure ABB’s Automation Builder. 

Since our station uses the PLC PM 583-ETH which belongs to the AC500 series, I will choose AC 

500 project in the Templates, then select the AC500 PM583-ETH which is in the PLC – AC 500 

V2 categories. Double-click on ‘Application’ insde the project window after that will open the 

CoDeSys – the main interface to program. I can also right-click on the PLC_PRG to add more 

programming window with different language such as ladder (LD) or function blocks (FBD). The 

descriptive programming of the PLC will be carried out by my thesis partner, Mr Doan Minh 

Khang. 



 

64 
 

  

 

Figure 3.34: Main programming interface of ABB Automation Builder. 

  



 

65 
 

Chapter 4. EVALUATING AND OPTIMIZING 

4.1 Evaluating and optimizing the demo station’s process 

• Finding the approriate speed value 

After completing the robot path programming and ensuring all signals operate as intended, the first 

thing I need to do is to find out what is the fastest speed possible for the station to operate smoothly 

and not having problems. To do this, I will simply try running the program with different speed 

data. To do this, I will keep on executing the process but putting in different value of speed in the 

proccess ‘rPath1’ to ‘rPath7’.  

                                                                          →  

Figure 4.1: Example on changing speed data using RAPID code. 

I will start from the low speed value v100 which means 100mm/s for all of the movements, then 

continue increasing the speed until the problems start to show up. After several trial run, I have 

sucessfully found out the set of value which will also make the station runs fine while keeping it 

stable: The robot speed to move from one an offset of a target to an another is 400mm/s, moving 

speed between the offset position and the work position of one target is 150mm/s. Any higher 

speed compared to this would cause the robot shaking, affecting the effiecieny and it’s life span. 

And these numbers are also used in the program above. 

• First evaluating and optimizing 

a. Evaluating 

My final and most important task is to evaluate the current performance of it and find solutions to 

optimize the efficiency if the current performance does not meet the requirement. The target set by 

ABB Robotics is above 99%, meaning that out of every 100 screws, a maximum of 1 screws may 

be missed. With that number in mind, I will start making a checklist showing the hit and miss rate 

of as many screws as I can. After the first evaliation, the result came back as follows: 

 



 

66 
 

 

 

          Figure 4.2: First evaluation checklist. 

It can easily be seen that of all 15 routines, there is only one time the robot can screw all 28 target 

without having a problem. Not mentioning about ABB Robotic’s requirement just yet, only 3 out 

of 15 routine has a sucessful rate above 50% which is generally a very poor performance so far. 

But these numbers are not surprising considering that this is ABB Robotics' first attempt at 

automating the screwing process. It's certain that perfection from the start would be almost 

impossible to achieve.  

b. Optimizing 

It can easily be seen the main cause of missed screwing is the screws getting misalinged from the 

threads, in which I noted in the checklist as “lệch ren”. The detail explaination for this problem is 

that even though the tip of the screw has been inserted into the correct position of the threaded 

hole, the rest of it is misaligned and not perpendicular to the threaded hole. And it will resulted in 

the screwdriver will not be able to twist it into place when being pushed down, and it can even 

destroy the threaded hole. The below photo shows the problem occurred in one of the inclined 

positions. 

 

    Figure 4.3: Misalinged screw. 

  



 

67 
 

And judging from the checklist, I can see that the problem can occur everywhere on the workobject 

and not repeatedly at any specific position. This means that the problem doesn’t come from the 

threaded hole itself but may come from the screwdriver tool, more specific is the teaching positions 

aren’t accurate enough. This made me realized a mistake I made in the process of teaching the 

screwing position, which is not checking every position manually after teaching it.  Knowing this, 

I started optimizing the demo the following day. Firstly, I double-check all the positions by using 

the FlexPendant to jog the robot to each work position, and manually pulsing the signal to make 

the screwdriver twists the screw into the threaded hole, and proceed to re-teach all the positions 

that have the problem.  

Once that is finished, I continue to address the problem of broken screw, which I noted as “vít 

hỏng”. This problem occurs simply because among the hundreds of screws used for screwing into 

the workpiece, some of them have damaged heads and are stripped. This problem also related 

directly from the misalignment problem mentioned earlier. Specifically, when a screw is 

misaligned from the threaded hole, the screwdriver tool presses and rotates downwards, but it still 

can't enter the hole and instead gets stuck. This leads to strong collision and friction between the 

screwdriver tool and the head of the screw and will destroy the screw’s head and lead to broken 

screw. To address this issue, I simply take out all of the screws in the supplier and then proceed to 

check one by one. I check them by pushing the screwdriver’s head into every screw’s head and 

twist the screw by hand. If any screw slipped from the screwdriver’s head, it means that the screw 

is broken and I will discard it. 



 

68 
 

 

                     Figure 4.4: Checking screw manually. 

• Second evaluating and optimizing 

a. Evaluating 

After the first optimizing process, the result for the next evaluation came in as follows: 

 

  



 

69 
 

 

         Figure 4.5: Second evaluation checklist 

Although the accuracy rate of screwing has increased from 48% to 63%, it's still far from our goal 

and it’s also evident that misalignment issue remains the primary cause of errors. This means that 

double-checking the positions of the work positions may not be the most accurate solution, as the 

underlying cause may still come from another factor. And since I'm not sure exactly what that 

factor is, the only thing I can do is to run more test cycles combined with observation and recording 

slow-motion videos. And after several test runs and study my slow-motion videos, I finally 

identified a serious issues: the fixture mechanism is not working as intended as the workpiece is 

still shifting and isn’t securely fixed on it. 

The fixture mechanism of our the demo station is a metal plane fixed on an air cylinder and on that 

plane will be two locating pin placed diagonally to eachother. Initially, It will lay beneath the 

conveyor and will be pushed up when receive signals. And simultaneously, on the underside of the 

workpiece, there will also be two corresponding holes for the two pins to go into and secure it. 

And that when the problem comes in, there were an error in the machining process of the workpiece 

leading to one of the two holes on the workpiece bigger than the other and the pin and as a result 

causing the workpiece shifting everytime the screwdriver pressed down the threaded-holes. 

 

 

                                                 Figure 4.6: Fixture mechanism. 



 

70 
 

 

 

Figure 4.7: Locating holes on workpiece with problems. 

b. Optimizing 

Since this workpiece has already been machined beforehand, I have no way to intervene and make 

direct adjustments on it. Instead, I will have to adjust the position of the stopper to fix this problem. 

Like the fixture mechanism, the stopper contains a rectangle metal piece installed above the air 

cylinder, that piece will be pushed up to block the workpiece as it’s moving on the conveyor. 

Luckily, the stopper is also mounted on it’s own locating system, which I can manually shifting 

the position by unloading the two screws holding it and moving the stopper between an allowed 

distance. 



 

71 
 

 

Figure 4.8: Stopper. 

So far, there’s still a small distance between the workpiece’s fixture mechanism and the stopper. 

The reason for this is I want to make sure there would be no collision between those two in the 

working process. But after seeing the serious problem mentioned above, I decided to shift the 

stopper closer to the fixture mechanism and somewhat pressing into it. The idea is to also turning 

the stopper into a thrid ‘locating pin’ and stop the workpiece from shifting in the screwing process. 

The result is as follows:  



 

72 
 

 

                Figure 4.9: Fixture and stopper mechanism after adjustment. 

It can be seen that now, the stopper is also securely fixed against the workpiece. The little yellow 

pieces on the four corners of the stopper is made of rubber and will ensure elasticity to prevent 

damage from collisions between it and the workpiece. 

• Third evaluation and optimizing 

a. Evaluating 

After fixing the problem of the workpiece shifting, the result of the following evaluation came in 

as follows: 



 

73 
 

 

 

Figure 4.10: Third evaluation checklist. 

Compared to the last evaluation, this time there has been a tremendous increase in the hit rate of 

our screw-driving demo, which means I have found and succesfully fixed what could be seen at 

the most serious issue so far. However, this rate is still not perfect as it's lacking about 4% 

compared to the requirement set by ABB Robotics and again, the remaining issue is still misalinged 

screws, though significantly lesser than before.  

b. Optimizing 

Instead of addressing the issue like how I did in the first evaluation, I decided to approach it in a 

different view. This time by manually inspecting the screwdriver’s movement combining with 

slow-motion videos, I noticed a detail that is most likely the root cause for the problem. Right at 

the moment the screwdriver’s head pressed down and the duck’s beak part opened, the screw itself 

is shaking due to eccentricity. This happens because the screwdriver’s head itself is also eccentric 

when rotating. 

 

       Figure 4.11: Screw shaking due to eccentricity. 



 

74 
 

To solve this problem, I will adjust the screwing positions so that they are no longer 5mm above 

the workpiece but instead touching it, which means the duck’s beak part will now touch the 

workpiece. Since when the beak opens, the screw starts to wobble and if it remains 5mm away 

from the workpiece, the screw will continue to wobble within that range. And after further 

discussion with Mr. Nguyen Minh Toan, head of this station, I decided to adjust the tool further. 

The new one will have the duck’s beak part connected with a spring system, ensuring elasticity 

between the collision of it and the work-piece and prevent those two from getting broken. After 

designing and machining, the result for the new tool head is as follows: 

   

Figure 4.12: Designing of the new tool head using SolidWorks. 



 

75 
 

  

                       Figure 4.13: Real product after machining. 

After finishing setting the new tool on the robot, I once again teaching the new work positions 

using the FlexPendant and after that running the evalution. This time, the result came out almost 

perfect as in the next 15 turns, only happen two miss positions and from the error of “broken 

screw”. And to fully get rid of this simple problem, I decided to replace all the current screws into 

completely new ones. The result later on has been accepted by Mr Nguyen Minh Toan, head of the 

project. 

4.2 Results before and after the evaluation and implementation 

It can be seen that the results I obtained after evaluating and optimizing the station were beyond 

expectations. This means that I have correctly assessed and identified the issues and provided 

reasonable solutions. And if these solutions are not sufficient in the long term, at least I have 

identified the correct direction to pursue, which will make long-term optimization easier to 

implement. The figure below shows the difference before and after optimization. 

 

Figure 4.14: Result before and after optimizing processes   



 

76 
 

Chapter 5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

After a long period of research, practice, and applying the skills I learned, the project 'Operating 

and Optimizing the Screw-Driving Efficiency for ABB Robotics' Demo Automatic Screw-Driving 

System' has completed. Although there are still some shortcomings and a few things that can be 

improved, the project has fundamentally achieved the initial objectives. And above all, during the 

implementation of this project, I had the opportunity to learn many new things that can benefit me 

greatly in the future. 

Besides reinforcing my knowledge about devices like PLCs, sensors, and programming languages, 

I also learned a lot about the structure and operation of industrial robots in general, and ABB robots 

in particular. This knowledge is essential and extremely important as we are in the era of Industry 

4.0 and looking towards the future, where automation will become highly popular and widely 

applied. 

5.2 Future work 

Since this is a demo station, the potential for further improvement of this project is still very 

significant. In the future, instead of using a system of fixed positions like we currently do, we 

could implement a vision system to optimize the station for various types of workpieces. Moreover, 

a full re-design of the tool can also be considered in order to decrease the size and weight, and 

fixing minor caussing the tool head’s to rotating eccentric. But overall, the project has meet it’s 

basic requirement. 

  



 

77 
 

REFERENCES 

[1]   David Peterson, 2023, “Origin Story: Meet Unimate, the First Industrial Robot”. 

Meet Unimate, the First Industrial Robot 

[2]   Abby, 2023, “Shakey the Robot Explained: Everything You Need to Know”.  

Shakey the Robot Explained: Everything you need to know 

[3]   Alex Misiti, 2020,  “A History of Industrial Robot.”. 

History of Industrial Robots 

[4]   ABB Robotics, 2024, “ Product Manual: IRB 1100” 

Product Manual: IRB 1100 

[5]   ABB Robotics, 2024, “ Product Specification: IRB 1100” 

Product Specifications: IRB1100 

[5]   ABB Robotics, 2023, “ Application Manual: Scalable I/O” 

Application Manual: Scalable I/O 

[6]   ABB Robotics, 2020, “ Operating Manual: OmniCore” 

Application Manual: OmniCore 

[7]   ABB Robotics, 2022, “ Product Manual: OmniCore E10” 

Operating Manual: OmniCore E10  

[8]   Nguyen Luu Minh, 2022, “Similarities and differences between Profinet and Ethernet.” 

Profinet vs Ethernet 

[9]   Duy Nhat, 2024, “Ladder Logic/Ladder Diagram.” 

Ladder Logic/Ladder Diagram 

[10] ABB Robotics, 2024, “Product: PM583 – ETH” 

PM583-ETH | ABB 

https://control.com/technical-articles/origin-story-meet-unimate-the-first-industrial-robot/
https://history-computer.com/shakey-the-robot/
https://www.wevolver.com/article/a-history-of-industrial-robots
https://library.abb.com/r?cid=9AAC407609&q=%203HAC064992-001
https://library.abb.com/r?cid=9AAC407609&q=3HAC064993-001
https://library.e.abb.com/public/0eec399058e247c6a491c726b3bb62f1/3HAC070208%20AM%20Scalable%20IO%20RW%207-en.pdf?x-sign=vYD6RtWsM68yUo73AuLRdphwwONJ7c1mN8hO0EVNtHIeYJByinw9tZzXciNR/fnV
https://www.google.com/url?sa=i&url=https%3A%2F%2Fus.v-cdn.net%2F5020483%2Fuploads%2Feditor%2Fbe%2Fpfx1qeuj75h4.pdf&psig=AOvVaw28DJDQLHzxNejhJjlm3bBG&ust=1722496482591000&source=images&cd=vfe&opi=89978449&ved=0CAQQn5wMahcKEwjAnfzJ3dCHAxUAAAAAHQAAAAAQBA
https://assets.ctfassets.net/oxcgtdo88e20/2R45HQd5vDVzzDNd71GDgd/b8d60219f34d39c12757743151ddd88d/3HAC079399_PM_OmniCore_E10-en.pdf
https://viettuans.vn/profinet-la-gi
https://mesidas.com/ladder/
https://new.abb.com/products/1SAP140300R0271/pm583-eth

