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Abstract 
 

 This thesis examines the significant impact of edge computing on contemporary 

manufacturing, with a specific emphasis on its capacity to fundamentally change data 

processing and decision-making in the Industry 4.0 era. Firstly, an overview of edge 

computing in manufacturing is introduced. Secondly, within the realm of Industrial 

Internet of Things, considering that edge computing offers distinct advantages, thereby 

generating value for advanced manufacturing. Finally, through the implementation of 

edge computing devices in manufacturing environment, the study demonstrates 

substantial improvements in data processing latency, decision-making capabilities, and 

integration with existing manufacturing systems. 
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1. Introduction 

 Within the realm of Industrial Internet of Things (IIoT), edge computing offers 

additional advantages such as flexibility, immediate data processing, and self-

governance, all of which contribute to the creation of value in intelligent manufacturing. 

In intelligent manufacturing, the increasing prevalence of terminal network devices has 

resulted in fresh obstacles regarding the management and maintenance, scalability, and 

reliability of data centers. Edge computing has shifted the location of computation from 

centralized data centers to the edge of the network. In addition, edge computing seeks to 

overcome these issues by establishing a transparent platform that can seamlessly include 

fundamental functionalities such as networking, processing, storage, and application.1 

 Several research papers have highlighted the benefits of edge devices in Industry 

4.0. Verma and Kumar have analyzed the application of edge computing in smart 

healthcare for early disease detection and remote monitoring of patient.2 Patel et al. 

proposed a new method for conducting data analytics Internet of Things using edge 

devices such as Raspberry Pi.3 Zhang and Ji applied an edge computing architecture to 

enable production anomaly detection and energy-efficient production decision approach 

for discrete manufacturing workshops.4 This thesis aims to assess the use of edge devices 

in a manufacturing environment by integrating Overall Equipment Effectiveness (OEE) 

and tracking binary signal data during machine operation. This should revolutionize 

maintenance practices, reducing downtime and increasing manufacturing efficiency. 

 The thesis consists of 9 chapters, including the Introduction and Reference. 

Chapter 2 introduces Industry 4.0 and provides a theoretical background of edge 

computing, including a comparison between cloud, fog, and edge computing. It also 

discusses the advantages and disadvantages of edge computing in Industry 4.0 and 

manufacturing. Then the advantages are summarized to form the basis for a methodology 

for implementation in Chapter 3. Chapters 4, 5, and 6 detailed the implementation of the 

edge device based on the methodology, and Chapter 7 evaluates the results. Chapter 8 

serves as the conclusion for this thesis and provides an outlook for further development.  

 
1 Chen et al. 2018 
2 Verma und Kumar 2023 
3 Patel et al. 2017 
4 Zhang und Ji 2020 
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2. State of Art 

 This chapter presents a theory on edge computing, beginning with a brief 

overview of Industry 4.0. It then explains the differences between cloud, fog, and edge 

computing in manufacturing. The following section outlines the advantages and 

disadvantages of implementing edge devices in manufacturing.  

2.1. Industry 4.0 and IoT in manufacturing 

 This section presents an overview of Industry 4.0 and IIoT, highlighting the 

significance of IIoT in transforming manufacturing processes. Furthermore, it describes 

a fundamental concept of the Internet of Things (IoT) framework in manufacturing. 

2.1.1. Industry 4.0 

 Industry 4.0, often known as the 4th industrial revolution, envisions the creation 

of sophisticated cyber-physical systems to build smart factories. It will facilitate the 

development of industrial ecosystems powered by intelligent systems that possess 

autonomous self-attributes, such as self-configuration, self-monitoring, and self-healing.5 

The implementation of Industry 4.0 can lead to exceptional levels of operational 

efficiency and a significant increase in production speed. Emerging forms of sophisticated 

manufacturing and industrial processes will arise, focusing on the collaboration between 

machines and humans and the development of symbiotic products.6 

 Industry 4.0 will embrace a wide range of technologies and their accompanying 

concepts. Some of the growing trends in the field include the Industrial Internet and the 

IIoT, as well as new product creation approaches in the 21st century, such as cloud-based 

design, cloud-based manufacturing, crowd sourcing, and open innovation, among others.7 

  

 
5 Thames und Schaefer 2017 
6 Sun et al. 2022 
7 Ali und Johl 2023 
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2.1.2. IoT Framework in manufacturing 

 Figure 1 illustrates the IoT framework consists of three essential layers: 

perception, network, and application.  

 

       Figure 1: IoT Framework8 

 In manufacturing, the perception layer entails physical devices, such as sensor-

equipped machines, responsible for gathering crucial process data pertaining to machine 

health and performance metrics. Figure 2 is an example of IoT framework, which 

provides more details for manufacturing. The network layer connects these physical 

devices with edge devices or cloud servers using suitable networking protocols. Data 

collected from machines undergo transmission to these edge devices, including 

computers, Arduino boards, or Raspberry Pis, before being relayed to cloud servers for 

comprehensive storage and analysis.9 

 Cloud servers serve as pivotal hubs managing and storing this data, acting as 

computational engines hosting applications that derive actionable insights. For instance, 

sensors continuously monitor tool conditions on machines, providing real-time insights 

crucial for informed decision-making.10 

 This established IoT framework empowers industries with real-time monitoring 

capabilities, which enables them to make data-driven decisions and facilitate predictive 

maintenance strategies. It forms a foundation for smart factories and industries, catalyzing 

innovation, fostering growth, and bolstering global competitiveness through intelligent, 

interconnected systems.11 

 
8 Surjya Kanta Pal 2022 
9 Surjya Kanta Pal 2022, p. 293–335 
10 Surjya Kanta Pal 2022, p. 293–335 
11 Surjya Kanta Pal 2022, p. 293–335 
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Figure 2: IoT framework in manufacturing12 

2.2. Edge computing 

 Edge computing is a distributed computational paradigm that situates 

computational capabilities and data storage near data origination points. This 

configuration responds adeptly to the imperative requirements for minimizing latency in 

data processing and optimizing bandwidth utilization.13 

 The antecedents of Edge Computing can be traced back to the inception of 

Content Delivery Networks (CDNs) during the latter part of the 1990s.14 These networks 

were initially developed to distribute web and video content from servers located in the 

immediate vicinity of to end-users. As time passed, this infrastructure evolved 

significantly, adapting to accommodate the storage of applications and their integral 

components at edge servers. This critical evolution marked the beginning of early-stage 

edge computing services, which notably facilitated real-time data aggregation.15 

2.2.1. Components of edge computing 

 Figure 3 illustrates how cloud computing concentrates critical services, such as 

servers, storage, databases, and applications are centralized in the cloud infrastructure, 

 
12 Surjya Kanta Pal 2022 
13 Cao et al. 2020, p. 85714–85728 
14 Ray Fernandez 2022 
15 Cao et al. 2020, p. 85717–85728 
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accessible across diverse devices via the Internet. This accessibility offers unprecedented 

flexibility and convenience, eliminating the necessity for individual server setups or 

reliance on local data centers, consequently leading to substantial cost reductions.16 

 

Figure 3: Edge computing: cloud to IoT devices17 

 In contemporary computing infrastructures, a hierarchical framework operates 

in which cloud servers function as central entities that manage applications and data. 

These servers are stationed in both public and private cloud services, as well as physical 

data centers, act as repositories for applications and orchestrate the management of 

multiple edge nodes across the network.18 

 Integrated computational entities known as edge devices, such as Automated 

Teller Machines (ATMs), surveillance cameras, and vehicles, are the primary focus of 

this framework. Despite their limited computational capabilities, these devices are 

optimized for immediate, low-latency tasks. They predominantly handle real-time data 

processing, functioning as primary data sources by performing localized computations 

before relaying crucial information to higher-tier computing layers.19 

 The classification of "edge nodes" encompasses various devices, including edge 

devices, edge servers, and edge gateways, which are intended to execute computational 

 
16 Verma und Kumar 2023, p. 121–155 
17 Avasalcai und Dustdar 2023 
18 Nguyen et al. 2020 
19 Cao et al. 2020 
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tasks within the realm of edge computing.20 These nodes are located near data sources 

and conduct localized computations, which significantly diminishing latency and 

enhancing response times in the decentralized architecture characteristic of edge 

computing.21 

 Specialized computational units known as edge servers are strategically 

positioned in operational settings like manufacturing plants, retail outlets, or distribution 

centers.22 These servers are fitted with sturdy industrial-grade components, featuring 

powerful Central Processing Units (CPUs) equipped with 8 - 16 cores or more, substantial 

memory capacity exceeding 16GB, and considerable local storage. Their pivotal role 

involves adeptly managing enterprise application workloads, delivering shared services, 

and catering to specific localized processing needs.23 

 Edge gateways in edge computing environments serve a dual function by 

performing networking tasks and managing enterprise application workloads. Their 

responsibilities encompass protocol translation, firewall protection, wireless connectivity 

establishment, and management of fundamental networking operations.24 The primary 

objective of edge gateways revolves around ensuring efficient data transmission, strong 

security measures, and seamless communication within the intricate fabric of edge 

computing environments.25 

 Cloud servers play a crucial role in managing applications and data by 

coordinating interactions with diverse components such as edge devices, nodes, servers, 

and gateways. This orchestrated collaboration optimizes data processing, reduces latency, 

and facilitates seamless communication by utilizing localized computational capabilities 

near the data sources.26 This configuration effectively addresses the dynamic demands 

inherent in contemporary computing architectures.27 

 
20 Jazaeri et al. 2021, p. 3187–3228 
21 Dong et al. 2020, p. 313–320 
22 Dong et al. 2020, p. 313–320 
23 Carvalho et al. 2021, p. 993–1023 
24 Alabadi et al. 2022, p. 66374–66400 
25 Zhao et al. 2023, p. 431–437 
26 Ding 2022, p. 283–297 
27 Avasalcai und Dustdar 2023 
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2.2.2. Edge vs. Cloud vs. Fog 

 Cloud computing has transformed data storage practices, displacing traditional 

methodologies with a wide range of services such as: "pCloud", "OneDrive", "Box", 

"Dropbox", and "Google Drive". This transformative shift, facilitated by digitalization, 

enables secure and ubiquitous access to data regardless of time or location. Fundamental 

attributes which characterize these cloud services include secured accessibility via web-

based platforms, adaptable scalability of resources, facile data sharing to foster 

collaborative efforts, and nuanced insights into resource utilization and management.  In 

the field of manufacturing, cloud servers serve as custodians of data and applications, 

thereby facilitating remote process monitoring while leveraging the centralized 

computing power inherit in cloud infrastructure to achieve operational improvements.28 

 Fog computing represents a computational model, in which network switches 

and routers carry out analytics on network packets without sensor or application 

dependencies. This model represents the notion of edge computing, underscoring the 

proximity of computation to data generation sources. Fog computing, which synonymous 

with edge computing, signifies the execution of data analytics in immediate to the sources 

of data generation, thus constraining data to the local network.29 

 The implementation of fog computing requires the creation of a virtualized 

distributed computing infrastructure spanning across both edge devices and the cloud. In 

this framework, each network device hosts a software agent capable of dynamically 

downloading and executing analytics code.30 However, the practical deployment of a fog 

computing framework encounters significant challenges arising from the processing 

power, memory, and battery power of edge devices, along with their unpredictable 

availability.31 Furthermore, the sporadic availability of these devices further complicates 

the establishment of a universally deployable fog computing system. These complexities 

pose substantial impediments to realizing an extensively applicable fog computing 

architecture.32 

 
28 Vaibhav Sharma 2023; Kolekar und Sakhare 2023 
29 Foko Sindjoung et al. 2023; Surjya Kanta Pal 2022 
30 Elmansy et al. 2023 
31 Sohail et al. 2023 
32 Lin et al. 2023 
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 Edge computing involves the execution of computational processes within a 

server located closer to specific machines, commonly referred to as the "edge server." 

The decentralized architecture of the edge server allows it to work in tandem with 

centralized cloud servers rather than replacing them.33 This infrastructure consists of 

multiple nodes strategically positioned closer to physical devices, enabling immediate 

and transient data analysis near the sources. This proximity optimizes data transmission 

to monitoring platforms while reducing congestion within the cloud infrastructure. Fog 

servers act as intermediaries between physical devices and cloud servers, expediting data 

reception and alleviating network congestion.34 

 Furthermore, edge computing enables the provision of computing, storage, and 

networking services closer to the network's edge. The installation of an extra layer of 

nodes acts as a mediator between the cloud infrastructure and the IoT devices, comprising 

sensors and actuators. This edge layer encompasses a diverse array of distributed edge 

devices, including cloudlets, portable edge computers, and edge-cloud configurations, 

allowing for the deployment of applications in remote locations. Essential traits 

characterizing an edge device involve heterogeneity, mobility, and constraints in 

computational resources.35 

 In the context of Figure 2, edge servers or devices serve the purpose of 

conducting preliminary data processing tasks, such as data filtering or prompt predictive 

analysis. Moreover, network routers, switches, sensor nodes, and gateways have the 

potential to be used as computational nodes for analytics, effectively addressing 

scalability concerns inherent in IoT systems.36 This approach, termed device edge 

computing, involves executing application-specific analytics on sensor data through 

sensor nodes and gateway devices for edge computing. By using edge devices for 

computation, IoT system scalability challenges are addressed, thereby enhancing both 

network and computational capabilities in a sophisticated manner.37 

 
33 Lin et al. 2023, p. 86–97; Zhang et al. 2023 
34 Zhang et al. 2023 
35 Lo und Niang 2023, p. 605–611 
36 Surjya Kanta Pal 2022 
37 Surjya Kanta Pal 2022 
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2.3. Edge computing - Catalyzing Data Processing Efficiency 

 This section provides an insight into the capabilities of edge computing in 

manufacturing. Edge computing represents a paradigm shift in data processing 

methodologies by strategically positioning cloud services closer to the source of data. 

This proximity ensures expedited processing and instantaneous responses, thereby 

optimizing system efficiency, particularly in time-critical scenarios.38 

2.3.1. In Industry 4.0 

 The hallmark of edge computing is its scalability and adaptability, effectively 

managing substantial volumes of data across diverse applications, including supply chain 

tracking, point-of-sale systems, and distributed artificial intelligence. The versatility of 

edge computing highlights its relevance in constantly changing operational landscapes. 

In practical scenarios, especially in retail environments, edge computing proves to be a 

potent tool for optimizing computing resources. For instance, security cameras 

autonomously process local data, accurately categorizing and processing relevant 

information. This decentralized approach significantly reduces the load on central 

systems, resulting in significant improvements in operational efficiency.39 

 Beyond the realm of retail, the pervasive influence of edge computing extends 

across various industrial sectors, including manufacturing, energy, transportation, 

healthcare, and media.40 With its capacity for localized data processing, it offers 

remarkable operational efficiencies that transcending conventional industry limitations. 

Combined with the transformative capabilities of 5G technology, edge computing plays 

a key role in reinforcing wireless networks. The establishment of local data centers 

adjacent to 5G towers facilitates rapid data transfer, amplifies device connectivity, and 

reduces latency, thus substantially amplifying the potential of 5G technology.41 

 In an era characterized by the proliferation of sensor-enabled smart 

environments, edge computing is emerging as an indispensable technology. When 

integrated with advanced technologies, such as 5G, it adeptly manages the growing 

 
38 Lin et al. 2023 
39 Sugumaran et al. 2023; Lin et al. 2023 
40 Zhang et al. 2021 
41 Baldoni et al. 2023, p. 51–61 
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volumes of data generated by smart cities, residences, and vehicle networks. This results 

in significant changes in lifestyle and interactions with technological systems.42 

2.3.2. In manufacturing 

 Edge computing possesses inherent characteristics that significantly benefit 

manufacturing operations. The foremost attribute is its low latency, enabling real-time 

data processing in close proximity to the data source. In manufacturing contexts, instant 

processing is crucial, particularly in tasks like predictive maintenance, where 

instantaneous insights into machinery performance could prevent costly downtimes. The 

capacity for real-time processing facilitates swift decision-making on the production 

floor, optimizing operational efficiency and enabling prompt responses to dynamic 

operational demands. Additionally, the aspect of bandwidth efficiency differentiates edge 

devices by processing data locally and transmitting only essential information to 

centralized systems. This minimizes network congestion, alleviating data flow 

impediments within the manufacturing ecosystem.43 

 Practical examples demonstrate the effectiveness of edge computing in 

augmenting manufacturing processes. For instance, in scenarios where predictive 

maintenance is required, sensors embedded in machinery capture real-time data on key 

parameters. Edge devices process this data locally, enabling the immediate detection of 

anomalies or potential equipment failures.44 Proactive identification of such issues averts 

disruptive downtimes, enabling optimized maintenance schedules and enhancing OEE. 

Figure 4 presents OEE data, including availability, performance, and quality. Another 

significant application is in quality control, where cameras and sensors stationed across 

production stages capture quality-relevant data edge computing enables immediate 

analysis, allowing quick adjustments to maintain stringent quality standards, minimize 

defects, and ensure product consistency.45 

 
42 Kong et al. 2022; Patrikar und Parate 2022; Dong et al. 2020 
43 Dong et al. 2020; Lin et al. 2023; Surjya Kanta Pal 2022; Verma und Kumar 2023 
44 Ringler et al. 2023; Mourtzis und Balkamos 2023 
45 Peniak et al. 2023 
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Figure 4: Real-time OEE Dashboard at 11:00 (UTC +1) 

 Furthermore, in logistics and supply chain management fields, edge devices 

integrated into inventory systems or vehicles track inventory, monitor stock levels, and 

optimize routes.46 This local data processing by edge computing enhances logistics 

operations, refining delivery efficiency, curtailing costs, and ensuring timely execution 

of supply chain logistics. Moreover, edge devices drive adaptive production processes by 

adjusting manufacturing parameters in real-time, responding to variable demand or 

changing conditions.47 This adaptability fosters flexible and agile manufacturing 

operations, optimizing resource allocation and production efficacy.48 

 These examples demonstrate how edge computing supports manufacturing by 

providing real-time insights, fortifying operational agility, and refining resource 

utilization. The strategic application of edge computing in these contexts emphasizes its 

pivotal role in transforming manufacturing operations, amplifying efficiency, and 

increasing the realization of Industry 4.0 principles.49 

2.4. Challenges in manufacturing systems implementation 

 Although edge computing offers significant benefits in manufacturing, it still has 

limitations when implemented in this industry. 

2.4.1. In Industry 4.0 implementation 

 The integration of Industry 4.0 the manufacturing sector gives rise to numerous 

challenges across data management, machine learning utilization, and organizational 

adaptation. Data challenges encompass the complexity of acquiring and managing diverse 

 
46 Zhang et al. 2023 
47 Chai und Zeng 2023, p. 9448–9458 
48 Zhang et al. 2023 
49 Ringler et al. 2023, p. 1–6 
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data sources within manufacturing environments. These intricacies stem from disparate 

systems, incompatible formats, and diverse origins, including sensor-generated, 

machinery-related, and supply chain data. Maintaining data quality could become 

complicated due to data silos, inconsistencies, and incomplete entries. This could have an 

impact on overall accuracy and reliability.50 Robust data security remains critical yet 

challenging, requiring comprehensive security measures and access controls to protect 

sensitive manufacturing data from cyber threats without impeding operational efficiency. 

Furthermore, integrating data from older systems into contemporary frameworks presents 

issues with data compatibility, affecting seamless data flow and interoperability which in 

turn weakens efficient data utilization.51 

 The use of machine learning in manufacturing confronts obstacles rooted in data 

scarcity, quality, and relevance. The scarcity of high-quality datasets, which suitable for 

training machine learning models, restricts their effectiveness in optimizing 

manufacturing processes. Moreover, the accuracy and effectiveness of these algorithms 

are impeded by data inaccuracies and biases. Therefore, it is necessary to thoroughly 

validate and curate data to ensure precise insights. Additionally, identifying and accessing 

relevant datasets that align with manufacturing objectives is challenging, which limits the 

application of advanced machine learning techniques in manufacturing environments.52 

 Furthermore, the adoption of Industry 4.0 technologies in manufacturing is 

hindered by organizational barriers. Resistance to technological change and cultural 

inertia pose significant challenges, impeding the seamless integration of contemporary 

technologies and methodologies.53 Moreover, the shortage of skilled professionals 

proficient in managing advanced technologies, such as IoT, Artificial Intelligence (AI), 

and data analytics hampers successful integration efforts. Operational inefficiencies can 

undermine the potential optimization of manufacturing operations when workflows and 

processes are not adequately restructured to align with Industry 4.0 standards.54 

 
50 Nimawat und Das Gidwani 2022 
51 Mourtzis und Balkamos 2023 
52 Ringler et al. 2023; Mourtzis und Balkamos 2023 
53 Baque-Cantos et al. 2023 
54 Ali und Johl 2023, p. 838–871 
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2.4.2. Edge computing implementation 

 The integration of edge devices within the context of Industry 4.0 manufacturing 

poses a myriad of complex challenges necessitating meticulous examination. Foremost 

among these challenges are issues related to interoperability and integration complexity. 

Diverse edge devices frequently operate on disparate protocols or standards, leading to 

interoperability conundrums.55 The optimization of manufacturing processes hinges 

crucially on efficient data exchange. Nevertheless, the task of facilitating seamless 

communication and integration between these devices, sensors, and existing legacy 

systems is marked by intricacy. The absence of standardized protocols stands as a 

significant impediment, impeding the establishment of streamlined connectivity and, 

consequently, hindering the enhancement of manufacturing operations.56 

 Another critical challenge is data security inherent to edge devices deployed in 

manufacturing environments. These devices located closer to operational areas become 

potential targets for cyber threats, which elevates concerns regarding data security. It is 

essential to protect sensitive manufacturing data while maintaining data processing 

efficiency.57 Establishing robust security measures encompassing encryption, stringent 

access controls, and proactive threat detection mechanisms is vital to fortify critical data 

against breaches or unauthorized access.58 

 Ensuring the reliability and durability of edge devices is a significant challenge 

in the manufacturing context. These devices operate in rugged industrial settings that are 

characterized by adverse conditions such as temperature fluctuations, humidity, 

vibrations, and electromagnetic interference. Therefore, it is paramount to sustain 

reliability and durability under such harsh environments. The devices must demonstrate 

durability in these conditions while ensuring dependable performance, ensuring 

uninterrupted data processing and system functionality that are crucial for manufacturing 

operations.59 Moreover, scalability and management complexity present significant 

challenges when managing a range of edge devices in manufacturing facilities. As the 

 
55 Ringler et al. 2023 
56 Peniak et al. 2023 
57 Foko Sindjoung et al. 2023 
58 Kolekar und Sakhare 2023 
59 Peniak et al. 2023 
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number of devices increases, efficient device management, monitoring, and maintenance 

become more intricate.60 

2.5. Overall Equipment Effectiveness (OEE) 

 OEE has been extensively utilized in the industrial sector, particularly in the 

realm of factory maintenance. The gold standard is used to assess the level of utilization 

of a manufacturing operation in relation to its maximum capacity. 61 

 The primary aim of OEE is to ascertain the efficiency of a certain asset or process 

line, and OEE has three key components: Availability refers to the amount of time that a 

machine is operational and accessible. Performance measures the actual production rate 

of the machine in comparison to the ideal or theoretical pace. Quality refers to the process 

of assessing and ensuring the control of the products' quality.62 OEE classifies the notable 

deficiencies resulting from subpar performance and investigates the concealed 

capabilities of the production process. The implementation and enhancement of OEE also 

include the cooperation of machine operations, maintenance, management, engineering, 

and planning. The primary constituents of OEE are computed using the subsequent 

equation:63  

Availability = 
𝑅𝑢𝑛 𝑡𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑡𝑖𝑚𝑒
  

Performance = 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
  

Quality = 
𝐺𝑜𝑜𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
 

 These measurements facilitate decision-making about equipment management 

and production planning. The OEE is determined using the following mathematical 

formula:64  OEE = Availability × Performance × Quality  

   

 
60 Foko Sindjoung et al. 2023; Ma et al. 2023 
61 Li et al. 2022 
62 S. Kalpande 2014 
63 S. Kalpande 2014 
64 Li et al. 2022 
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3. Methodology 

 The methodology for exploring the use of edge devices in manufacturing is 

divided into three parts. Firstly, the advantages of edge devices are highlighted. Secondly, 

assumptions are made based on the aforementioned advantages. Finally, research 

questions (RQs) are defined, and an overview of their implementation is provided. 

3.1. Background 

 In Peniak et al., industrial devices tend to produce a considerably larger amount 

of data compared to other IoT devices, which leads to delays and higher expenses when 

transferring data to the cloud. Minimizing reaction times to key events and maintaining 

unique security needs are essential in the industrial setting. Hence, transferring 

calculations to edge devices within industrial facilities can aid in mitigating these 

problems and enhancing the speed of reaction and efficiency of bandwidth. This implies 

that certain data processing and storage operations are transitioning from the cloud to 

edge. 65 

 S. K. Pal et al. mentioned that edge device plays a crucial role in achieving the 

deployment of real-time monitoring and control of manufacturing processes.66 

 In terms of security, Keyan et al. outlined that conventional cloud computing 

necessitates the uploading of all data to the cloud for consolidated processing, which 

follows a centralized processing approach. During this procedure, there are potential 

hazards such as data loss and data leakage, which cannot ensure the security and 

confidentiality of information. Instances such as account passwords, history search 

information, and even commercial secrets have the potential to be divulged. Edge 

computing exclusively handles tasks inside its own domain, processing data locally 

without the need for cloud uploads. This eliminates the hazards associated with network 

transmission, ensuring data security. When data is subjected to an assault, it simply 

impacts the local data, rather than affecting all data. 

3.2. Approaching 

 To understand the advantages of the edge device for Industry 4.0 transformation 

in manufacturing, in this study, two edge devices are implemented in the manufacturing 

 
65 Peniak et al. 2023 
66 Surjya Kanta Pal 2022 
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environment. This implementation is aimed to stretch out the ability of edge devices to 

enhance machine control operations by facilitating faster and more accurate decision-

making processes, leading to improved production efficiency. Moreover, these devices 

reduce data processing latency due to their computational capabilities and connecting 

directly to data sources. Lastly, their capacity to handle real-time data is going to increase 

production processes, allowing for immediate adjustments and enhanced quality control, 

therefore aligning closely with Industry 4.0 objectives. 

 A scoping study was carried out to delineate the main features of this project, 

offering valuable insights into the production process. Three RQs are outlined for the 

purpose of the project as follows: 

 How can edge device take part in monitoring manufacturing machine operation? 

 How does local data processing in edge computing mitigate the risks associated 

with network transmission? 

 In what ways does the shift to edge devices for data processing improve the 

effectiveness of real-time monitoring and control in manufacturing processes? 

3.3. Define 

 This section will analyze and define three RQs mentioned in Section 3.2. 

Subsequently, an overview of two implementations will be presented to answer the 

following questions. 

3.3.1. Research Questions 1 and 2 

 In this project, it is aimed to express the ability of edge devices are integrated 

seamlessly into manufacturing infrastructure, gathering information directly from a 

manufacturing machine through wires. This integration is crucial for real-time monitoring 

since it tracks operational parameters, thereby detecting anomalies and preventing 

equipment failure and optimizing production efficiency. With the support of Node-RED, 

which is installed on the edge device, the data is then stored locally. Figure 5 illustrates 

the flows of data transferring from the manufacturing machine to the edge device.  
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Figure 5: Overview of data flow in the implementation 

 This local processing should enhance data security significantly, mitigating risks 

like data loss and leakage that are prevalent in cloud computing models. 

3.3.2. Research Question 3 

 Automation and data interchange have significantly enhanced the performance 

and efficiency of production through the implementation of Industry 4.0. An obstacle 

faced in Industry 4.0 is the ability to anticipate and avert anomalous actions inside the 

production procedure. Real-time data monitoring is increasingly crucial for factory 

control in terms of ensuring quality and performance.67 The capability of edge devices to 

process data in real-time and calculate OEE is evident in the implementation, highlighting 

the ability to visualize performance, quality, and availability as any modifications occur. 

 During the implementation, there are some limitations in tracking real total of 

production and scraps and measuring the quality in the OEE. In that case, the total of 

production and scraps will be inputted by hand and the quality of the production is 

assumed to be random numbers which are not less than 90%. However, the total and 

scraps are still calculated with real-time. Figure 6 illustrates the overall view of the 

implementation.  

 

Figure 6: Outline of the implementation 

 
67 Li et al. 2022 
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4. Experimental Setup 

 The Lern – und Forschungsfabrik (LFF) is utilized for research, teaching, 

qualification, and industry collaboration purposes. It has equipped various manufacturing 

machines such as Computerized Numerical Control (CNC) machines, turning machines, 

milling machines as well as many automations, robotics, and digital manufacturing in an 

advanced industrial environment. In addition, LFF provides an opportunity to apply 

theoretical knowledge in a practical setting, working with machinery, tools, and 

technologies that are used in the manufacturing industry. Therefore, LFF is an appropriate 

place for this research to test and implementing new technologies from the IIoT. 

4.1. Experimental Machine and Devices 

 Figure 7 illustrates two edge devices which are implemented in the LFF for 

research purposes. The netFIELD Compact X8M is an industrial edge computing device 

designed to fulfill the demanding requirements of Industry 4.0 applications. The device 

is constructed using the high-performance NXP i.MX 8M Mini Quad-core ARM Cortex-

A53 processor, which offers significant computational capabilities for efficiently 

handling intricate tasks in real-time. The gadget is packed with 2 GB DDR4 RAM 

(Random Access Memory) and 32 GB eMMC storage, making it suitable for data-

intensive applications.68 

  

Figure 7: netFIELD Compact X8M (left) and RevPi Core (right) in LFF 

 
68 Hilscher Gesellschaft für Systemautomation mbH 2023 
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 On the other hand, the Revolution Pi Core from KUNBUS is a series of 

industrial-grade computers based on the Raspberry Pi. These devices are specifically 

designed for use in industrial settings, where they modify the well-known and flexible 

Raspberry Pi platform for more demanding applications. The Revolution Pi Core models 

commonly have ARM processors, such as the Broadcom BCM2835, and are outfitted 

with standard Raspberry Pi interfaces, along with a set of GPIO pins for interfacing with 

industrial equipment.69  

 Both devices are equipped with Node-RED, a tool for implementing simple 

automation tasks and quickly creating prototypes. The Table 1 provides technical data of 

two edge devices. 

Table 1: Technical Data of edge devices 

 NetFIELD Compact X8M70 Revolution Pi Core71 

Processor 
NXP i.MX 8M Mini Quad-core ARM Cortex-

A53 
Broadcom BCM2835 

Clock speed 1.8 GHz 250 MHz 

RAM 2 GB DDR4 512 MB 

Storage 32 GB eMMC 4 GB 

Operating 

system 
netFIELD OS on Linux aarch64 (ARMv8-A) 

Raspbian image on 

Linux ARMv6 

Connectivity Ethernet Ethernet 

Power 

supply 
24 V DC 12-24 V DC 

Dimension 

112 mm x 84 mm x 25 mm  

(without plugs and mounting bracket) 

 

167 x 118 x 27 mm 

(with plugs and mounting bracket) 

96 x 70 x 22 mm 

 
69 Revolution Pi n.d. 
70 Hilscher Gesellschaft für Systemautomation mbH 2023 
71 Broadcom Corporation 2012 
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4.2. Collecting data from manufacturing machine and storing data 

 Several machines at the LFF already have built-in IIoT capabilities, and 

communication issues may be resolved through software solutions. For collecting and 

storing data, the edge device, Revolution Pi Core (RevPi Core), a compact industrial 

computer, has been chosen. It serves as a flexible and robust solution for various industrial 

and automation applications. Revolution Pi Core is connected to RevPi DIO and RevPi 

DI devices, as shown in Figure 7, providing customizable Inputs/Outputs (I/O) options. 

These devices contribute to the collection of binary signals (0 and 1) from the bandsaw 

system. Figure 8 shows the JAESPA Bandsaw, which is implemented in LFF. 

 

Figure 8: JAESPA Bandsaw 

 By integrating RevPi Core directly into the bandsaw's signals, the binary data is 

accurately tracked with no latency. The Node-RED function, installed on the RevPi Core, 

allows for real-time visual representation of the binary data. Table 2 displays the location 

of relevant bandsaw signals used for research and linked to RevPi DIO and RevPi DI. 
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Table 2: The I/O Addresses at the bandsaw and the I/O at the Rev Pi 

ID Name Description 
Bandsaw 

Address 
I/O RevPi 

2 Start Start the bandsaw X411 Input_DI_3 

3 Stop Stop the bandsaw X412 Input_DI_4 

5 NOT-AUS Emergency stop button X551 Input_DIO_5 

21 Sägebügel senken Cutting process starts. 

Cutting head moves down. 
Y536 Input_DI_15 

22 Sägebügel heben Cutting process ended. 

Cutting head moves up. 
Y537 Input_DI_16 

 Figure 9 illustrates the positions of the button to control the bandsaw. In this 

implementation, only three buttons are used, which are signed by numbers 2, 3, 5 in the 

Figure 9. The “Sägebügel senken” and the “Sägebügle heben” are based on the movement 

of the bandsaw. After connecting wires from the bandsaw to the Revpi Core to receive 

signal, they are configured in the RevPi Core web, which is able to access via the Internet 

Protocol (IP) Address 134.147.229.144, in order to ping in the interface via SSH (Secure 

Shell) connection of the Revpi Core. 

  

Figure 9: ID from Bandsaw and configuration in PiCtory 

4.3. Computing and processing real-time data 

 The implementation of Industry 4.0 has significantly enhanced the productivity 

and effectiveness of the industrial sector via the utilization of automation and data 

interchange. Edge device has been crucial in facilitating the transition to Industry 4.0, 
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where data processing is interconnected via the IIoT.72 Real-time OEE allows 

manufacturers to access a live analytics dashboard, an advanced alarm system, and 

ensures transparency in the production line.73 In this implementation, with netFIELD 

Compact X8M, OEE demonstrates the capability of processing data in real-time on edge 

devices, hence enabling real-time computerization. 

4.3.1. OEE calculation 

 Availability: measures the actual runtime of the equipment compared to the 

planned production time. It considers the Availability Loss, which is downtime (including 

equipment failures, maintenance, unplanned stops, and changeover time). The formular 

of Availability is: 

Availability (%) = (Actual runtime / Planned Production time) × 100%  

Actual runtime is also calculated as: Planned Production time – Downtime 

In LFF – a factory in Lehrstuhl für Produktionssystem (LPS) for research and testing 

industrial application scenarios, it has been empirically determined that the average 

Availability of equipment is 82.235%. 

 Performance: is calculated based on the ability of a manufacturing process to 

shift products during specific time intervals, usually measured within an 8-hour working 

day. It gauges the attainment of planned production targets and gradually decreases when 

no products are produced. 

 Quality rate: considers the number of good-quality products produced in relation 

to the total number of products produced. 

Quality rate (%) = (Good Products / Total Products) × 100% 

4.3.2. Live monitoring 

 With the features that Node-RED has provided, the Node-RED-powered live 

OEE Monitoring Dashboard represents a new model in the continuous quest for 

manufacturing excellence. It gives an immediate window into production processes, 

offering critical insights into the optimization of efficiency, the minimization of 

disruptions, and the fostering of continuous improvement. 

 
72 Zhang et al. 2021 
73 Li et al. 2022 
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5. Challenges in Implementing edge devices 

 Before discussing the implementation, this chapter will highlight several 

challenges that arose during the process. The mentioned problems took a significant 

amount of time to resolve during installation. 

5.1. Competencies in programming languages 

 To serve and reach the purpose of the research, general knowledge about coding 

languages is necessary. Two main challenges in coding are pointed out during the 

implementation. 

 Coding often involves abstract concepts that can be difficult to grasp, such as 

algorithms, data structures, and design patterns. It is important to maintain a clear and 

logical structure when writing about coding concepts to ensure comprehension.74 

 Moreover, one of the most significant challenges in learning to code is 

debugging. Identifying and fixing errors can be time-consuming and frustrating, 

especially when errors are cryptic, or the source of the problem is unclear. It may take 

time to read through the code to track where errors are occurring, especially in tracking 

time for OEE in this research.75 

5.2. Lack of memory 

 Initially, there was no information available regarding the username and 

password from previous testing and implementation. As a result, the device was reset to 

its factory settings and updated with the latest image available on the KUNBUS website. 

After several experiences with RevPi Core, including getting familiar with the interface, 

working with the Linux operating system, accessing via SSH connection, and 

downloading IoT applications, some issues arose when using the edge device. However, 

it was discovered that the RevPi core had run out of memory, despite being flashed 

previously. Figure 10 illustrates the status of memory of the RevPi Core. 

 
74 Sakshi Gupta 2023 
75 Sakshi Gupta 2023 
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Figure 10: Checking storage in RevPi Core through SSH connection 

 To find the root of the problem, the image package has been checked. The 

previously installed image package has nearly filled the storage capacity of RevPi Core. 

In order to reduce the amount of memory, the lite version of that image package was 

installed. As shown in Figure 11, the storage in /dev/root has been greatly reduced. 

 

Figure 11: Storage in RevPi Core after re-install image package 

 For other applications that are missing in the lite version and required for 

implementation, they can be installed manually later. Figure 12 illustrates the memory of 

the full version image package and its lite version. 

 

Figure 12: Memory of the image package 
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6. Implementation and Result 

 Following the experimental set up, this chapter will present the details of the 

implementation using two edge devices in LFF. The first implementation demonstrates 

how the edge device can track signals from a manufacturing machine. The second 

implementation showcases the edge device's ability to process real-time data and provide 

live monitoring. 

6.1. Network preparation 

 This section explains how to access an edge device using an IP address and 

discusses the safety of storing data locally on the device. 

6.1.1. RevPi Core 

 The Rev Pi is equipped with an operating system that runs on a Raspbian OS. 

Hence, all communication originating from the RevPi Core and transmitted to the 

network is comparable to that of a typical computer or Raspberry Pi. The MAC address 

of the RevPi Core is associated with the static IP address 134.147.229.144 within the 

network. Since the connections are restricted to the Local Network, there is no 

requirement to configure data security. Access to the operating system can be achieved 

using an SSH connection, which is protected by a login and password. In addition, the 

user interface for configuring the input and output settings through web browser is 

protected by a username and password. 

6.1.2. NetFIELD Compact X8M 

 NetFIELD Compact is an edge gateway device, which allow user to deploy 

workloads in close proximity to industrial machinery, allowing for the dissemination of 

IIoT logic and intelligence. 

 When netFIELD Compact is connected to the netFIELD Cloud through the 

internet, user is able to administer device remotely through the netFIELD.io Portal. The 

netFIELD Portal serves as the web-based user interface for the netFIELD Cloud. This 

connectivity enables the remote management of IIoT applications and facilitates the 

control and distribution of these applications over the internet. The box's MAC address is 

linked to the static IP address 134.147.229.182 on the network. Access to the operating 

system can be attained through the netFIELD.io, which required login and password from 
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both netFIELD account which is created in netFIELD.io and another account from the 

device itself. 

6.2. JAESPA Bandsaw 

 The Figure 13 depicts the transmission of binary data for the bandsaw, as 

presented in Table 2. The RevPi Core gathers all the data and then transmits it to Node-

RED, a flow-based programming tool used to integrate these separate data streams. Node-

RED processes and potentially improves the data prior to transmitting it to InfluxDB, a 

specialized database designed for efficient storage and retrieval of time-stamped data. 

InfluxDB facilitates instantaneous analysis and monitoring of the bandsaw's operational 

and performance metrics. 

 

Figure 13: Data flow for bandsaw 

6.2.1. Collecting data 

 The Node-RED visual editor, which has been installed in RevPi Core, is able to 

access via the IP Address 134.147.229.144:1880. In order to create a working 

configuration for a RevPi system using Node-RED, it is necessary to install two essential 

node packages: “node-red-contrib-revpi-nodes” and “node-red-contrib-influxdb”. After 

installation, the “node-red-contrib-revpi-nodes” is set up to establish communication with 

the RevPi Core by configuring the accurate IP address, hence enabling the transmission 

of signal data from the device. In Figure 14, a “inject timestamp” node is set up to activate 

every 5 seconds, commencing the process of collecting data at consistent intervals.  
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Figure 14: Config for collecting data from Bandsaw 

 The “revpi-getpin” node is configured to the corresponding input pin as shown 

in Figure 15. The server is set as 134.147.229.144:8000. Once access to the RevPi Core 

is obtained, select the “Input Pin” corresponding to the input in Table 2. 

 

Figure 15: Config IP and Input signal of RevPi Core 

 

6.2.2. Storing and visualizing data 

 The data will be stored locally in InfluxDB, which exclusively accepts and stores 

data in numerical format. Once the data has been consolidated into a unified message and 

formatted correctly, it can be further processed or stored. The “influxdb out” is set up 

with a suitable server for data storage as shown in Figure 16.  
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Figure 16: Flows for storing data into InfluxDB 

 To convert the data from “revpi-getpin” from text format to numeric format, it 

is necessary to include a “function 23” node in the flow. Code 1 illustrates the code that 

use to transform the data from “string” type to numeric.  

  

msg.payload = { 

    "notaus" : parseFloat(msg.payload["revpi/single/I_5"]), 

    "start" : parseFloat(msg.payload["revpi/single/I_3_i03"]), 

    "stop": parseFloat(msg.payload["revpi/single/I_4_i03"]), 

    "ssenken": parseFloat(msg.payload["revpi/single/I_15_i03"]), 

    "sheben": parseFloat(msg.payload["revpi/single/I_16_i03"]) 

} 

return msg; 

 

Code 1: Convert from string to number 

 Furthermore, the data is presented through a Node-RED dashboard, which offers 

immediate feedback on production processes, facilitating prompt decision-making and 

efficiency improvements. In Figure 17, the “table function” node contains code which has 

been shown in Code 2, creates a table for displaying the data to the “ui_table” node after 

joining all five signals from the RevPi Core. Additionally, the “refresh” button node 

updates the data when clicked.  

 

Figure 17: Flow for displaying the dashboard 
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 In Code 2, the code begins by retrieving any previously stored data from the 

flow's context under the key savedData. If no data is found, it defaults to an empty array. 

Subsequently, it creates a new object with a timestamp and several other properties that 

correspond to the RevPi's I/O pin states. This new object is then added to the beginning 

of the tableData array using unshift(). The updated tableData array is then reassigned for 

future use in the flow. Finally, the table has the updated tableData, prepared for the next 

node in the flow. 

 

tableData = flow.get("savedData") || []; 

 

tableData.unshift({ 

    "timestamp"       : new Date().toLocaleString(), 

    "NOTAUS"          : msg.payload["revpi/single/I_5"], 

    "Start"           : msg.payload["revpi/single/I_3_i03"], 

    "Stop"            : msg.payload["revpi/single/I_4_i03"], 

    "Sägebügel senken": msg.payload["revpi/single/I_15_i03"], 

    "Sägebügel heben" : msg.payload["revpi/single/I_16_i03"], 

    }); 

msg.payload = tableData; 

flow.set("savedData", tableData); 

return msg; 

 

Code 2: Creating table 

6.2.3. Result 

 The InfluxDB, which has been installed in RevPi Core, is able to access via the 

IP Address 134.147.229.144:8086. In addition, to access the database in InfluxDB, 

username and password is required. To visualize the data, InfluxDB requires some 

commands for selecting and sorting in database, which is shown in Code 3. Figure 18 

shows data that has been retrieve from the RevPI Core, which is automatically updated. 

from(bucket: "RUB") 

    |> range(start: v.timeRangeStart, stop: v.timeRangeStop) 

    |> filter(fn: (r) => r["_measurement"] == "Revpi") 

    |> filter(fn: (r) => r["_field"] == "notaus" or r["_field"] == 

"sheben" or r["_field"] == "ssenken" or r["_field"] == "start" or 

r["_field"] == "stop") 

    |> aggregateWindow(every: v.windowPeriod, fn: mean, createEmpty: 

false) 

    |> yield(name: "mean") 

Code 3: Selecting data in InfluxDB 
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 In Code 3, the InfluxDB code is specifically intended for retrieving and 

processing data from the bucket "RUB". The query filters the data to a specific time range 

which are “v.timeRangeStart” and “v.timeRangeStop”. The “Revpi” measurement then 

filters for records whose field has one of five predefined values: “notaus”, “sheben”, 

“stop”, “start”, or “ssenken”. After that, it uses an aggregate window to average (mean) 

the data points for each window period specified by “v.windowPeriod”. This aggregate 

does not produce empty windows if there are no data points (createEmpty: false). 

 

Figure 18: Data for Input START (above) and Input STOP in InfluxDB (below) 

 Figure 19 illustrates couples of data from Revpi Core that are displaying in the 

Node-RED dashboard. Compares to the data in InfluxDB, although the data that display 

with Node-RED backend is not required couple lines of code to visualize it, it needs to 

have the “refresh” button to update the data. 

 

Figure 19: Data visualized in Node-RED 

 



31 

 

 

6.3. Computing with real-time data 

 The backend of Node-RED on netFIELD Compact X8M can be reached by using 

the IP Address 134.147.229.182:1880. To establish an OEE dashboard using Node-RED, 

it is imperative to install the "node-red-dashboard" node package. This package facilitates 

the creation of input data for OEE and enables live monitoring of the OEE dashboard. 

Figure 20 show an overview of Node-RED flows for calculating and live monitoring OEE 

dashboard. 

 

Figure 20: Node-RED flows for calculating and live monitoring OEE dashboard 

6.3.1. Phase 1 - Setting input for OEE calculation 

 Figure 21 illustrates the inputs required for an Overall Equipment Efficiency 

(OEE) calculation. The "Total input" and "Scraps input" nodes presumably gather data 

on the overall production and scrap quantities. The "Planned Product Input" and "Planned 

hours input" nodes can be utilized to enter the expected production output and the planned 

production time respectively. The "Limit hours" node is set up to limit the input of the 

"Planned hours input" to a maximum of 8 hours per day, ensuring that the working hours 

do not exceed this restriction. 
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Figure 21: Config flows for Input 

 As shown in Code 4, the code begins by converting the output from “Planned 

hours input” node to a numeric value and assigning it as “input”. If there is no output 

from the “Planned hours input”, the default value of 8 is used. The code thereafter defines 

a valid range for the “input”, bounded by the minimum value of 0 and the maximum value 

of 8. If the “input” is a numerical value and is within the required range, the code proceeds 

by returning the message object with the payload attribute assigned to the input value. If 

the input falls beyond the permissible range, it will generate a warning in the Node-RED 

environment, highlighting the problem and terminating the flow by returning null, 

therefore rejecting the “input”. 

 

var input = parseFloat(msg.payload) || 8; 

var min = 0; 

var max = 8; 

if (!isNaN(input) && input >= min && input <= max) { 

    msg.payload = input; 

    return msg; 

} else { 

    node.warn("Input is outside the allowed range (" + min + " - " + max 

+ ")"); 

    return null; 

} 

 

Code 4: "Limit hours" configuration for working hour  
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 Figure 22 illustrates the inputs are further handled by “set msg.topic” nodes, 

which may format the incoming data with certain subjects for further downstream 

processing. 

 

Figure 22: The whole Node-RED flows for input quantities to OEE 

 The "join" node is set to manually combine four message parts, each identified 

by a unique “msg.topic”, into a single key/value object as shown in Figure 23, and it will 

output a message when all parts have been received for a comprehensive OEE 

computation. The message will be sent to “Get info” node through the “link out” . 

 

Figure 23: Config join node to join 4 Inputs into one message 

6.3.2. Phase 2 - Calculate OEE 

 Figure 24 illustrates the overall view of phase 2 flow to calculate OEE. There 

are two separate ways of data that the node “Get Info” will receive in this phase. The first 

one is “Refresh” node, which will let the “Get Info” send the default data to calculate 

OEE. The second method involves the “Get Info” function gathering data from the 

specified inputs in Phase 1 in order to compute OEE. 
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Figure 24: Gathering data and calculate OEE 

 Code 5 shows the code retrieves the timestamp from the system by the time it 

receives data from the “Refresh” button node or acquires data from the Phase 1 and then 

it establishes the current_date as the beginning of the day (midnight) by resetting the 

hours, minutes, seconds, and milliseconds to zero. The work_start_time is calculated by 

adding a fixed offset of 21600000 milliseconds (equivalent to 6 hours) to the midnight 

timestamp, which reflects the usual start time for a shift. The code also establishes 

predetermined values of 7200 for planned_production and 8 for planned_hours, which 

may be replaced by values from incoming message in Phase 1. In addition, if there is no 

available data for the total and scraps, they will be automatically set to 0. 

 The script then calculates the current_worktime by determining the number of 

hours that have passed since the start of the workday. The program incorporates a 

provision to account for shifts that commence after 3 pm (equivalent to 54000000 

milliseconds after midnight), by adjusting the values of work_start_time and 

current_worktime accordingly. After getting the time in the “Get Info” node, the data then 

transfers to “OEE” node to calculate. 

 

var current_timestamp = (new Date().getTime()); 

var current_date = new Date(current_timestamp); 

current_date.setHours(0, 0, 0, 0); 

var starttime = current_date.getTime(); 

var work_start_time = starttime + 21600000; 

var planned_production = parseFloat(msg.payload.product) || 7200; 

var planned_hours = parseFloat(msg.payload.hours) || 8; 

var total = parseFloat(msg.payload.total) || 0; 

var scraps = parseFloat(msg.payload.scraps) || 0; 

var current_worktime = (current_timestamp - work_start_time) / 3600000; 

if (current_timestamp > starttime + 54000000) { 

    work_start_time = starttime + 54000000; 

    current_worktime = (current_timestamp - work_start_time) / 3600000; 

}; 
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msg.payload = 

{ 

    "resettime": starttime, 

    "currenttime": current_timestamp, 

    "starttime": work_start_time, 

    "currentworktime": current_worktime, 

    "total": total, 

    "scraps": scraps, 

    "product": planned_production, 

    "hours": planned_hours 

} 

return msg; 

 

Code 5: Code for getting timestamp and receiving data from "Refresh" button node or from Phase 1  

 The process of calculating OEE is started by defining variables for 

work_start_time, current_time, and the time elapsed since a reset point as shown in Code 

6. These variables are taken from the message payload obtained from the “Get Info” node. 

The current_worktime is used along with planned_hours and planned_production to 

determine the current_plan_production rate.  

 

//Plan: 

var work_start_time = msg.payload.starttime; 

var current_time = msg.payload.currenttime; 

var difftime = (current_time - msg.payload.resettime) / 3600000; 

var current_worktime = msg.payload.currentworktime; 

var planned_production = parseFloat(msg.payload.product); 

var planned_hours = parseFloat(msg.payload.hours); 

var current_plan_production = ((current_worktime) / planned_hours) * 

planned_production; 

 

Code 6: Define time variables 

 Furthermore, in this OEE calculation, Available is assumed a fixed number of 

82.235 and Quality is a variable that is not affected by the time according to Section 4.3.1, 

the calculation of the difftime is then used to set the Performance to 0 from midnight until 

a new shift is started at 6 o’clock in the morning. In Code 7, the code calculates 

performance based on the ratio of actual total production (total) to the planned production 

rate (current_plan_production). If there has been no production yet, performance is 

determined by calculating the percentage deviation from the projected production. 

Consequently, the performance will gradually decline over time in the absence of output 

during a shift. 
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//AVAILABILITY: 

var availability = 82.235; 

//PERFORMANCE:  

var total = parseFloat(msg.payload.total); 

 

if (total === 0) { 

    var performance = (1 - current_plan_production / planned_production) 

* 100; 

} else { 

    performance = (total / current_plan_production) * 100; 

}; 

if (difftime >= 0 && difftime < 6) { 

    performance = 0; 

}; 

 

Code 7: Calculating for Availability and Performance 

 Because there is no real data for the shift, the code simulates a quality assurance 

process in which a random mechanism determines if a product is good in this research as 

shown in Code 8. The quality percentage is determined by dividing the number of good 

products by the total number of products, taking into account any defective items. 

Furthermore, the quality is assumed to be 100 if there is no input of both total and scraps 

from the Phase 1. 

 

//QUALITY: 

var goods = 0; 

var scraps = parseFloat(msg.payload.scraps); 

var quality = 100; 

if (total !== 0 && scraps === 0) { 

    for (var i = 0; i <= total; i++) { 

        var randomNumber = Math.round(Math.random() * 5); 

        if (randomNumber !== 0) { 

            goods++; 

        } 

    } 

    quality = (goods / total) * 100; 

} else if (total !== 0 && scraps !== 0) { 

    quality = ((total - scraps) / total) * 100; 

}; 

 

//OEE: 

var oee = (availability * performance * quality) / 10000; 

 

Code 8: Calculating for Quality and OEE 
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 After calculating all three factors of OEE, the script computes the final OEE by 

multiplying the three percentages and then dividing by 10,000 to re-scale to a percentage 

format. Code 9 below illustrates a full script of OEE calculation. 

 

//Plan: 

var work_start_time = msg.payload.starttime; 

var current_time = msg.payload.currenttime; 

var difftime = (current_time - msg.payload.resettime) / 3600000; 

var current_worktime = msg.payload.currentworktime; 

var planned_production = parseFloat(msg.payload.product); 

var planned_hours = parseFloat(msg.payload.hours); 

var current_plan_production = ((current_worktime) / planned_hours) * 

planned_production; 

 

//Calculation OEE: 

 

//AVAILABILITY: 

var availability = 82.235; 

 

//PERFORMANCE:  

var total = parseFloat(msg.payload.total); 

if (total === 0) { 

    var performance = (1 - current_plan_production / planned_production) 

* 100; 

} else { 

    performance = (total / current_plan_production) * 100; 

}; 

if (difftime >= 0 && difftime < 6) { 

    performance = 0; 

}; 

 

//QUALITY: 

var goods = 0; 

var scraps = parseFloat(msg.payload.scraps); 

var quality = 100; 

if (total !== 0 && scraps === 0) { 

    for (var i = 0; i <= total; i++) { 

        var randomNumber = Math.round(Math.random() * 5); 

        if (randomNumber !== 0) { 

            goods++; 

        } 

    } 

    quality = (goods / total) * 100; 

} else if (total !== 0 && scraps !== 0) { 

    quality = ((total - scraps) / total) * 100; 

}; 
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//OEE: 

var oee = (availability * performance * quality) / 10000; 

 

msg.payload = 

{ 

    "availability": parseFloat(availability.toFixed(2)), 

    "performance": parseFloat(performance.toFixed(2)), 

    "quality": parseFloat(quality.toFixed(2)), 

    "oee": parseFloat(oee.toFixed(2)), 

    "total": total, 

    "scraps": scraps, 

    "plannedproduction": planned_production, 

    "plannedworktime": planned_hours 

} 

return msg; 

 

Code 9: Full script of OEE 

6.3.3. Result 

 Figure 25 illustrate the results from the edge device that demonstrate its 

capability to process real-time data to calculate OEE. The variables resettime, starttime, 

and currenttime indicate that the system is capable of processing and delivering data with 

precision down to the second. The edge device promptly calculates time-sensitive 

metrics. The OEE can be computed either when the "Refresh" button is clicked or when 

the input from Phase 1 is received.  

 

Figure 25: Result when pressing "Refresh" button (above) and result when receiving input from Phase 1 (below) 
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 With the Node-RED backend, the edge device also provides the ability to real-

time monitor the OEE by immediately visualizing the performance, quality, and 

availability as any modifications occur. Figure 26 shows the gauge nodes of three 

components of OEE. The OEE gauge nodes are connected to the OEE function node, in 

order to receive data and display it on the dashboard. 

 

Figure 26: Config flow for the gauge nodes 

 Then four gauges nodes are configured the output corresponding to the output of 

“OEE” node as shown in Figure 27. 

 

Figure 27: Config data for the gauge nodes 
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 After configuring every element for the gauge nodes, the interface of the OEE 

dashboard is illustrates as shown in Figure 28. When the 'Refresh' button is pressed or 

input is received from Phase 1, the dashboard data will update automatically based on 

results of the calculations explained in Sections 6.3.1 and 6.3.2.  

 

Figure 28: OEE dasboard when receiving data from Phase 1 (above) and when pressing "Refresh" button (below) 
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7. Evaluation 

 In the work with RevPi Core, its strong computational capabilities allowed for 

accurate and efficient processing of real-time data. It resulted in processing and 

visualizing data directly from the bandsaw with Node-RED backend are expected to lead 

to more accurate and timely decision-making. The implementation of storing binary 

values of the bandsaw to local storage using RevPi Core aids in long-term data analysis 

and trend identification, which can be crucial for predictive maintenance and optimizing 

the bandsaw's performance (RQ 1).  

 Moreover, local data storage provides a significant security, as it reduces the 

risks associated with remote data breaches and unauthorized external access. Both edge 

device ensure security by using login and password authentication. Similarly, the 

Influxdb backend also employs this security measure to safeguard the data which are 

stored locally on the edge device (RQ 2). It is not necessary to upload data to the cloud 

to avoid cyber-attack during the uploading. 

 A limitation was noticed during the implementation of the edge device. It is not 

possible to measure the delay when transferring data from the bandsaw to the Revpi Core 

due to the lack of appropriate facilities. 

 The implementation of netFIELD Compact offers an efficient method for 

processing and analyzing real-time data of OEE metrics, leading to improved planning, 

and decision-making processes (RQ 3). The successful use of these technologies 

highlights the capacity of edge computing to improve manufacturing productivity and 

efficiency. 

 Edge computing plays a significant role in modern manufacturing by potentially 

revolutionizing data processing and decision-making processes in the era of Industry 4.0. 

While the introduction of edge computing devices such as the RevPi Core and netFIELD 

Compact X8M has shown notable reductions in data processing delay, enhanced decision-

making abilities, and seamless integration with existing production systems, there is still 

potential of incorporating AI and machine learning in such as detecting scraps for 

calculating quality to make OEE more accurate.  
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8. Conclusion and Outlook 

 This thesis has examined the transformative role of edge computing in modern 

manufacturing, demonstrating its potential to revolutionize data processing and decision-

making processes in the era of Industry 4.0. Through the implementation of edge 

computing devices such as RevPi Core and netFIELD Compact X8M, it has illustrated 

substantial improvements in data processing latency, enhanced decision-making 

capabilities, and seamless integration with existing manufacturing systems. Despite the 

limitation in the input data that has been mentioned in the Sections 3.3.2 and 7, the results 

emphasize both the improvements in productivity as well as the obstacles and remedies 

involved in using edge computing in manufacturing settings. Furthermore, the research 

underscores the importance of edge computing in enabling more sustainable, flexible, and 

secure manufacturing operations. 

  This work shows the transformative impact of edge computing and its utilization 

in manufacturing. Despite the limitations in implementing, the use of edge devices can 

demonstrate substantial improvements in data processing latency and decision-making. 

Further implementation is possible that could illustrate a significant reduction in time of 

data processing compared to cloud computing or fog computing. By implementing 

machine learning, the binary signal data is analyzed identify subtle changes in machine 

operation that precede failures. This allows for timely maintenance actions to be taken 

before breakdowns occur, improving overall efficiency and reducing downtime. 

Therefore, edge device could predict machinery failure or required maintenance more 

accurately. Moreover, edge device could greatly enhance the precision of OEE 

calculations by enabling predictive analytics for equipment failure, quality defect 

forecasting, and optimization of performance parameters in real-time.  
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I hereby affirm in lieu of oath 

- that I have written this academic thesis independently and have used only the resources 

listed in the attached list. 

- that this academic paper has not been submitted to any other examination authority in 

the same or a similar form. 

- that I have clearly identified any passages taken verbatim or in spirit from published or 

unpublished sources. 

    Bochum, 12.02.2024   

  [Place, date]     [Signature]  

Mechanical Engineering Examination Regulations 2013 (Bachelor & Master) 

§ Section 14 Failure, cheating and breach of regulations 

(1) If the candidate attempts to influence the result of an examination by cheating, the 

examination in question is to be assessed as 5.0 ("fail") or "fail". The respective examiner 

or invigilator will record the assessment. The assessment is carried out by the examination 

board. In the event of multiple or other serious attempts at cheating, the candidate may be 

excluded from taking further examinations or exmatriculated. 

(4) The submission of plagiarized material for project work, course-related assignments 

or the Master's thesis is considered cheating in accordance with para. 1. 

§ Section 63 Higher Education Act - HG 

(5) The universities and the state examination offices can demand and accept an 

affirmation in lieu of an oath from the examination candidates that the examination work 

has been carried out by them independently and without unauthorized external assistance. 

Anyone who wilfully 

(2) 1. violates a regulation of a university examination regulation concerning cheating in 

examinations or 

(3) 2. against a corresponding regulation of a state or ecclesiastical examination regulation 

(4) is in breach of an administrative offence. The administrative offence may be punished 

with a fine of up to 50,000 euros. The universities may regulate the details in regulations. 

Huy Pham
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The competent administrative authority for the prosecution and punishment of 

administrative offences according to sentence 2 number 1 is the Chancellor and according 

to sentence 2 number 2 the State Examination Office. In the event of multiple or other 

serious attempts at cheating, the candidate may also be exmatriculated. 

§ Section 156 StGB False affirmation in lieu of an oath 

 Anyone who makes a false affidavit before an authority responsible for taking 

an affirmation in lieu of an oath or makes a false statement in reliance on such an affidavit 

is liable to a custodial sentence not exceeding three years or a monetary penalty. 

§ Section 161 StGB Negligent false statement; 

Negligent false affirmation in lieu of an oath 

(1) If one of the offences specified in sections 154 to 156 has been committed through 

negligence, a custodial sentence not exceeding one year or a monetary penalty shall be 

imposed. 

(2) The offence shall not be punishable if the offender corrects the false statement in good 

time. The provisions of section 158 (2) and (3) shall apply mutatis mutandis. 
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