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Abstract

This thesis examines the significant impact of edge computing on contemporary
manufacturing, with a specific emphasis on its capacity to fundamentally change data
processing and decision-making in the Industry 4.0 era. Firstly, an overview of edge
computing in manufacturing is introduced. Secondly, within the realm of Industrial
Internet of Things, considering that edge computing offers distinct advantages, thereby
generating value for advanced manufacturing. Finally, through the implementation of
edge computing devices in manufacturing environment, the study demonstrates
substantial improvements in data processing latency, decision-making capabilities, and

integration with existing manufacturing systems.
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1. Introduction

Within the realm of Industrial Internet of Things (110T), edge computing offers
additional advantages such as flexibility, immediate data processing, and self-
governance, all of which contribute to the creation of value in intelligent manufacturing.
In intelligent manufacturing, the increasing prevalence of terminal network devices has
resulted in fresh obstacles regarding the management and maintenance, scalability, and
reliability of data centers. Edge computing has shifted the location of computation from
centralized data centers to the edge of the network. In addition, edge computing seeks to
overcome these issues by establishing a transparent platform that can seamlessly include

fundamental functionalities such as networking, processing, storage, and application.*

Several research papers have highlighted the benefits of edge devices in Industry
4.0. Verma and Kumar have analyzed the application of edge computing in smart
healthcare for early disease detection and remote monitoring of patient.? Patel et al.
proposed a new method for conducting data analytics Internet of Things using edge
devices such as Raspberry Pi.> Zhang and Ji applied an edge computing architecture to
enable production anomaly detection and energy-efficient production decision approach
for discrete manufacturing workshops.* This thesis aims to assess the use of edge devices
in a manufacturing environment by integrating Overall Equipment Effectiveness (OEE)
and tracking binary signal data during machine operation. This should revolutionize

maintenance practices, reducing downtime and increasing manufacturing efficiency.

The thesis consists of 9 chapters, including the Introduction and Reference.
Chapter 2 introduces Industry 4.0 and provides a theoretical background of edge
computing, including a comparison between cloud, fog, and edge computing. It also
discusses the advantages and disadvantages of edge computing in Industry 4.0 and
manufacturing. Then the advantages are summarized to form the basis for a methodology
for implementation in Chapter 3. Chapters 4, 5, and 6 detailed the implementation of the
edge device based on the methodology, and Chapter 7 evaluates the results. Chapter 8

serves as the conclusion for this thesis and provides an outlook for further development.

1 Chenetal. 2018
2Verma und Kumar 2023
3 Patel et al. 2017

4 Zhang und Ji 2020



2. State of Art

This chapter presents a theory on edge computing, beginning with a brief
overview of Industry 4.0. It then explains the differences between cloud, fog, and edge
computing in manufacturing. The following section outlines the advantages and

disadvantages of implementing edge devices in manufacturing.
2.1.  Industry 4.0 and 10T in manufacturing

This section presents an overview of Industry 4.0 and 1loT, highlighting the
significance of 10T in transforming manufacturing processes. Furthermore, it describes

a fundamental concept of the Internet of Things (1oT) framework in manufacturing.
2.1.1. Industry 4.0

Industry 4.0, often known as the 4th industrial revolution, envisions the creation
of sophisticated cyber-physical systems to build smart factories. It will facilitate the
development of industrial ecosystems powered by intelligent systems that possess
autonomous self-attributes, such as self-configuration, self-monitoring, and self-healing.®
The implementation of Industry 4.0-can lead to exceptional levels of operational
efficiency and a significant increase-in-production speed:. Emerging forms of sophisticated
manufacturing and industrial processes will arise, focusing on the collaboration between

machines and humans and the development of symbiotic products.®

Industry 4.0 will embrace a wide range of technologies and their accompanying
concepts. Some of the growing trends in the field include the Industrial Internet and the
I1oT, as well as new product creation approaches in the 21st century, such as cloud-based

design, cloud-based manufacturing, crowd sourcing, and open innovation, among others.”

5 Thames und Schaefer 2017
6 Sun et al. 2022
7 Ali und Johl 2023



2.1.2. 1oT Framework in manufacturing

Figure 1 illustrates the IoT framework consists of three essential layers:

perception, network, and application.

Application
Service layer I

Network

Intermediate layer

Perception

Physical layer

Figure 1: loT Framework®

In manufacturing, the perception layer entails physical devices, such as sensor-
equipped machines, responsible for gathering crucial process data pertaining to machine
health and performance metrics. Figure 2 is an example of loT framework, which
provides more details for manufacturing. The network layer connects these physical
devices with edge devices or cloud servers using suitable networking protocols. Data
collected from machines undergo transmission to these edge devices, including
computers, Arduino boards, or Raspberry Pis, before being relayed to cloud servers for

comprehensive storage and analysis.®

Cloud servers serve as pivotal hubs managing and storing this data, acting as
computational engines hosting applications that derive actionable insights. For instance,
sensors continuously monitor tool conditions on machines, providing real-time insights

crucial for informed decision-making.°

This established 10T framework empowers industries with real-time monitoring
capabilities, which enables them to make data-driven decisions and facilitate predictive
maintenance strategies. It forms a foundation for smart factories and industries, catalyzing
innovation, fostering growth, and bolstering global competitiveness through intelligent,

interconnected systems. !

8 Surjya Kanta Pal 2022

® Surjya Kanta Pal 2022, p. 293-335
10 Surjya Kanta Pal 2022, p. 293-335
11 Surjya Kanta Pal 2022, p. 293-335
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Figure 2: 10T framework in manufacturing!?

2.2. Edge computing

Edge computing is a distributed computational paradigm that situates
computational capabilities and data storage near data origination points. This
configuration responds adeptly to the imperative requirements for minimizing latency in
data processing and optimizing bandwidth utilization.*®

The antecedents of Edge Computing can be traced back to the inception of
Content Delivery Networks (CDNSs) during the latter part of the 1990s.1* These networks
were initially developed to distribute web and video content from servers located in the
immediate vicinity of to end-users. As time passed, this infrastructure evolved
significantly, adapting to accommodate the storage of applications and their integral
components at edge servers. This critical evolution marked the beginning of early-stage

edge computing services, which notably facilitated real-time data aggregation.®
2.2.1. Components of edge computing

Figure 3 illustrates how cloud computing concentrates critical services, such as

servers, storage, databases, and applications are centralized in the cloud infrastructure,

12 Surjya Kanta Pal 2022

13 Cao et al. 2020, p. 8571485728
14 Ray Fernandez 2022

15 Cao et al. 2020, p. 85717-85728



accessible across diverse devices via the Internet. This accessibility offers unprecedented
flexibility and convenience, eliminating the necessity for individual server setups or

reliance on local data centers, consequently leading to substantial cost reductions.®

Cloud layer

D E - J;L J;L - % loT devices

Figure 3: Edge computing: cloud to IoT devices'’

In contemporary computing. infrastructures, a hierarchical framework operates
in which cloud servers function as central entities that manage applications and data.
These servers are stationed in both public and private cloud services, as well as physical
data centers, act as repositories for applications and orchestrate the management of

multiple edge nodes across the network.®

Integrated computational entities known as edge devices, such as Automated
Teller Machines (ATMs), surveillance cameras, and vehicles, are the primary focus of
this framework. Despite their limited computational capabilities, these devices are
optimized for immediate, low-latency tasks. They predominantly handle real-time data
processing, functioning as primary data sources by performing localized computations

before relaying crucial information to higher-tier computing layers.®

The classification of "edge nodes™ encompasses various devices, including edge

devices, edge servers, and edge gateways, which are intended to execute computational

16 VVerma und Kumar 2023, p. 121-155
7 Avasalcai und Dustdar 2023

18 Nguyen et al. 2020

19 Cao et al. 2020



tasks within the realm of edge computing.?® These nodes are located near data sources
and conduct localized computations, which significantly diminishing latency and
enhancing response times in the decentralized architecture characteristic of edge

computing.?!

Specialized computational units known as edge servers are strategically
positioned in operational settings like manufacturing plants, retail outlets, or distribution
centers.?? These servers are fitted with sturdy industrial-grade components, featuring
powerful Central Processing Units (CPUs) equipped with 8 - 16 cores or more, substantial
memory capacity exceeding 16GB, and considerable local storage. Their pivotal role
involves adeptly managing enterprise application workloads, delivering shared services,

and catering to specific localized processing needs.?

Edge gateways in edge computing environments serve a dual function by
performing networking tasks and managing enterprise application workloads. Their
responsibilities encompass protocol translation, firewall protection, wireless connectivity
establishment, and management of fundamental networking operations.?* The primary
objective of edge gateways revolves around ensuring efficient data transmission, strong
security measures, and seamless-communication within the intricate fabric of edge

computing environments.?®

Cloud servers play a crucial role in managing applications and data by
coordinating interactions with diverse components such as edge devices, nodes, servers,
and gateways. This orchestrated collaboration optimizes data processing, reduces latency,
and facilitates seamless communication by utilizing localized computational capabilities
near the data sources.?® This configuration effectively addresses the dynamic demands

inherent in contemporary computing architectures.?’

20 Jazaeri et al. 2021, p. 3187-3228

21 Dong et al. 2020, p. 313-320

22 Dong et al. 2020, p. 313-320

23 Carvalho et al. 2021, p. 993-1023
24 Alabadi et al. 2022, p. 6637466400
%5 Zhao et al. 2023, p. 431-437

26 Ding 2022, p. 283-297

27 Avasalcai und Dustdar 2023



2.2.2. Edge vs. Cloud vs. Fog

Cloud computing has transformed data storage practices, displacing traditional
methodologies with a wide range of services such as: "pCloud", "OneDrive", "Box",
"Dropbox", and "Google Drive". This transformative shift, facilitated by digitalization,
enables secure and ubiquitous access to data regardless of time or location. Fundamental
attributes which characterize these cloud services include secured accessibility via web-
based platforms, adaptable scalability of resources, facile data sharing to foster
collaborative efforts, and nuanced insights into resource utilization and management. In
the field of manufacturing, cloud servers serve as custodians of data and applications,
thereby facilitating remote process monitoring while leveraging the centralized

computing power inherit in cloud infrastructure to achieve operational improvements.?®

Fog computing represents a computational model, in which network switches
and routers carry out analytics on network packets without sensor or application
dependencies. This model represents the notion of edge computing, underscoring the
proximity of computation to data generation sources. Fog computing, which synonymous
with edge computing, signifies the execution of data analytics in immediate to the sources
of data generation, thus constraining data to the local network.?°

The implementation of fog computing requires the creation of a virtualized
distributed computing infrastructure spanning across both edge devices and the cloud. In
this framework, each network device hosts a software agent capable of dynamically
downloading and executing analytics code.®® However, the practical deployment of a fog
computing framework encounters significant challenges arising from the processing
power, memory, and battery power of edge devices, along with their unpredictable
availability.3! Furthermore, the sporadic availability of these devices further complicates
the establishment of a universally deployable fog computing system. These complexities
pose substantial impediments to realizing an extensively applicable fog computing

architecture.3?

28 Vaibhav Sharma 2023; Kolekar und Sakhare 2023
29 Foko Sindjoung et al. 2023; Surjya Kanta Pal 2022
30 Elmansy et al. 2023

31 Sohail et al. 2023

% Lin et al. 2023



Edge computing involves the execution of computational processes within a
server located closer to specific machines, commonly referred to as the "edge server.”
The decentralized architecture of the edge server allows it to work in tandem with
centralized cloud servers rather than replacing them.®® This infrastructure consists of
multiple nodes strategically positioned closer to physical devices, enabling immediate
and transient data analysis near the sources. This proximity optimizes data transmission
to monitoring platforms while reducing congestion within the cloud infrastructure. Fog
servers act as intermediaries between physical devices and cloud servers, expediting data

reception and alleviating network congestion.3*

Furthermore, edge computing enables the provision of computing, storage, and
networking services closer to the network's edge. The installation of an extra layer of
nodes acts as a mediator between the cloud infrastructure and the 10T devices, comprising
sensors and actuators. This edge layer encompasses a diverse array of distributed edge
devices, including cloudlets, portable edge computers, and edge-cloud configurations,
allowing for the deployment of applications in remote locations. Essential traits
characterizing an edge device involve heterogeneity, mobility, and constraints in

computational resources.®

In the context of Figure 2, edge servers or devices serve the purpose of
conducting preliminary data processing tasks, such as data filtering or prompt predictive
analysis. Moreover, network routers, switches, sensor nodes, and gateways have the
potential to be used as computational nodes for analytics, effectively addressing
scalability concerns inherent in loT systems.®® This approach, termed device edge
computing, involves executing application-specific analytics on sensor data through
sensor nodes and gateway devices for edge computing. By using edge devices for
computation, 10T system scalability challenges are addressed, thereby enhancing both

network and computational capabilities in a sophisticated manner.*’

3 Lin et al. 2023, p. 86-97; Zhang et al. 2023
3 Zhang et al. 2023

% Lo und Niang 2023, p. 605-611

% Surjya Kanta Pal 2022

37 Surjya Kanta Pal 2022



2.3. Edge computing - Catalyzing Data Processing Efficiency

This section provides an insight into the capabilities of edge computing in
manufacturing. Edge computing represents a paradigm shift in data processing
methodologies by strategically positioning cloud services closer to the source of data.
This proximity ensures expedited processing and instantaneous responses, thereby

optimizing system efficiency, particularly in time-critical scenarios.®®
2.3.1. InIndustry 4.0

The hallmark of edge computing is its scalability and adaptability, effectively
managing substantial volumes of data across diverse applications, including supply chain
tracking, point-of-sale systems, and distributed artificial intelligence. The versatility of
edge computing highlights its relevance in constantly changing operational landscapes.
In practical scenarios, especially in retail environments, edge computing proves to be a
potent tool for optimizing computing resources. For instance, security cameras
autonomously process local data, accurately categorizing and processing relevant
information. This decentralized approach significantly reduces the load on central

systems, resulting in significant improvements in operational efficiency.3®

Beyond the realm of retail, the pervasive influence of edge computing extends
across various industrial sectors, including manufacturing, energy, transportation,
healthcare, and media.*® With its capacity for localized data processing, it offers
remarkable operational efficiencies that transcending conventional industry limitations.
Combined with the transformative capabilities of 5G technology, edge computing plays
a key role in reinforcing wireless networks. The establishment of local data centers
adjacent to 5G towers facilitates rapid data transfer, amplifies device connectivity, and

reduces latency, thus substantially amplifying the potential of 5G technology.**

In an era characterized by the proliferation of sensor-enabled smart
environments, edge computing is emerging as an indispensable technology. When
integrated with advanced technologies, such as 5G, it adeptly manages the growing

% Lin et al. 2023

39 Sugumaran et al. 2023; Lin et al. 2023
40 Zhang et al. 2021

41 Baldoni et al. 2023, p. 51-61
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volumes of data generated by smart cities, residences, and vehicle networks. This results
in significant changes in lifestyle and interactions with technological systems.*2

2.3.2. In manufacturing

Edge computing possesses inherent characteristics that significantly benefit
manufacturing operations. The foremost attribute is its low latency, enabling real-time
data processing in close proximity to the data source. In manufacturing contexts, instant
processing is crucial, particularly in tasks like predictive maintenance, where
Instantaneous insights into machinery performance could prevent costly downtimes. The
capacity for real-time processing facilitates swift decision-making on the production
floor, optimizing operational efficiency and enabling prompt responses to dynamic
operational demands. Additionally, the aspect of bandwidth efficiency differentiates edge
devices by processing data locally and transmitting only essential information to
centralized systems. This minimizes network congestion, alleviating data flow

impediments within the manufacturing ecosystem.*3

Practical examples demonstrate the effectiveness of edge computing in
augmenting manufacturing processes. For instance, in scenarios where predictive
maintenance is required, sensors embedded.in machinery capture real-time data on key
parameters. Edge devices process this data locally, enabling the immediate detection of
anomalies or potential equipment failures.** Proactive identification of such issues averts
disruptive downtimes, enabling optimized maintenance schedules and enhancing OEE.
Figure 4 presents OEE data, including availability, performance, and quality. Another
significant application is in quality control, where cameras and sensors stationed across
production stages capture quality-relevant data edge computing enables immediate
analysis, allowing quick adjustments to maintain stringent quality standards, minimize
defects, and ensure product consistency.*®

42 Kong et al. 2022; Patrikar und Parate 2022; Dong et al. 2020

4 Dong et al. 2020; Lin et al. 2023; Surjya Kanta Pal 2022; Verma und Kumar 2023
4 Ringler et al. 2023; Mourtzis und Balkamos 2023

% Peniak et al. 2023
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Figure 4: Real-time OEE Dashboard at 11:00 (UTC +1)

Furthermore, in logistics and supply chain management fields, edge devices
integrated into inventory systems or vehicles track inventory, monitor stock levels, and
optimize routes.*® This local data processing by edge computing enhances logistics
operations, refining delivery efficiency, curtailing costs, and ensuring timely execution
of supply chain logistics. Moreover, edge devices drive adaptive production processes by
adjusting manufacturing parameters in real-time, responding to variable demand or
changing conditions.*” This adaptability fosters flexible and agile manufacturing

operations, optimizing resource allocation and production efficacy.*®

These examples demonstrate-how edge computing supports manufacturing by
providing real-time insights, fortifying ‘operational "agility, and refining resource
utilization. The strategic application of edge computing in these contexts emphasizes its
pivotal role in transforming manufacturing operations, amplifying efficiency, and
increasing the realization of Industry 4.0 principles.*

2.4. Challenges in manufacturing systems implementation

Although edge computing offers significant benefits in manufacturing, it still has

limitations when implemented in this industry.
2.4.1. In Industry 4.0 implementation

The integration of Industry 4.0 the manufacturing sector gives rise to numerous
challenges across data management, machine learning utilization, and organizational

adaptation. Data challenges encompass the complexity of acquiring and managing diverse

46 Zhang et al. 2023

47 Chai und Zeng 2023, p. 9448-9458
48 Zhang et al. 2023

49 Ringler et al. 2023, p. 1-6
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data sources within manufacturing environments. These intricacies stem from disparate
systems, incompatible formats, and diverse origins, including sensor-generated,
machinery-related, and supply chain data. Maintaining data quality could become
complicated due to data silos, inconsistencies, and incomplete entries. This could have an
impact on overall accuracy and reliability.>® Robust data security remains critical yet
challenging, requiring comprehensive security measures and access controls to protect
sensitive manufacturing data from cyber threats without impeding operational efficiency.
Furthermore, integrating data from older systems into contemporary frameworks presents
issues with data compatibility, affecting seamless data flow and interoperability which in

turn weakens efficient data utilization.>!

The use of machine learning in manufacturing confronts obstacles rooted in data
scarcity, quality, and relevance. The scarcity of high-quality datasets, which suitable for
training machine learning models, restricts their effectiveness in optimizing
manufacturing processes. Moreover, the accuracy and effectiveness of these algorithms
are impeded by data inaccuracies and biases. Therefore, it is necessary to thoroughly
validate and curate data to ensure precise insights. Additionally, identifying and accessing
relevant datasets that align with manufacturing objectives is challenging, which limits the

application of advanced machine learning techniques in manufacturing environments.>2

Furthermore, the adoption of Industry 4.0 technologies in manufacturing is
hindered by organizational barriers. Resistance to technological change and cultural
inertia pose significant challenges, impeding the seamless integration of contemporary
technologies and methodologies.>® Moreover, the shortage of skilled professionals
proficient in managing advanced technologies, such as loT, Atrtificial Intelligence (Al),
and data analytics hampers successful integration efforts. Operational inefficiencies can
undermine the potential optimization of manufacturing operations when workflows and

processes are not adequately restructured to align with Industry 4.0 standards.>*

% Nimawat und Das Gidwani 2022

51 Mourtzis und Balkamos 2023

52 Ringler et al. 2023; Mourtzis und Balkamos 2023
%3 Baque-Cantos et al. 2023

54 Ali und Johl 2023, p. 838-871
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2.4.2. Edge computing implementation

The integration of edge devices within the context of Industry 4.0 manufacturing
poses a myriad of complex challenges necessitating meticulous examination. Foremost
among these challenges are issues related to interoperability and integration complexity.
Diverse edge devices frequently operate on disparate protocols or standards, leading to
interoperability conundrums.® The optimization of manufacturing processes hinges
crucially on efficient data exchange. Nevertheless, the task of facilitating seamless
communication and integration between these devices, sensors, and existing legacy
systems is marked by intricacy. The absence of standardized protocols stands as a
significant impediment, impeding the establishment of streamlined connectivity and,

consequently, hindering the enhancement of manufacturing operations.>®

Another critical challenge is data security inherent to edge devices deployed in
manufacturing environments. These devices located closer to operational areas become
potential targets for cyber threats, which elevates concerns regarding data security. It is
essential to protect sensitive manufacturing data while maintaining data processing
efficiency.>” Establishing robust security measures encompassing encryption, stringent
access controls, and proactive threat detection mechanisms is vital to fortify critical data

against breaches or unauthorized access.®

Ensuring the reliability and durability of edge devices is a significant challenge
in the manufacturing context. These devices operate in rugged industrial settings that are
characterized by adverse conditions such as temperature fluctuations, humidity,
vibrations, and electromagnetic interference. Therefore, it is paramount to sustain
reliability and durability under such harsh environments. The devices must demonstrate
durability in these conditions while ensuring dependable performance, ensuring
uninterrupted data processing and system functionality that are crucial for manufacturing
operations.>® Moreover, scalability and management complexity present significant

challenges when managing a range of edge devices in manufacturing facilities. As the

% Ringler et al. 2023
% peniak et al. 2023
5" Foko Sindjoung et al. 2023
%8 Kolekar und Sakhare 2023
%9 Peniak et al. 2023
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number of devices increases, efficient device management, monitoring, and maintenance

become more intricate.°
2.5.  Overall Equipment Effectiveness (OEE)

OEE has been extensively utilized in the industrial sector, particularly in the
realm of factory maintenance. The gold standard is used to assess the level of utilization

of a manufacturing operation in relation to its maximum capacity. 5

The primary aim of OEE is to ascertain the efficiency of a certain asset or process
line, and OEE has three key components: Availability refers to the amount of time that a
machine is operational and accessible. Performance measures the actual production rate
of the machine in comparison to the ideal or theoretical pace. Quality refers to the process
of assessing and ensuring the control of the products’ quality.®? OEE classifies the notable
deficiencies resulting from subpar performance and investigates the concealed
capabilities of the production process. The implementation and enhancement of OEE also
include the cooperation of machine operations, maintenance, management, engineering,

and planning. The primary constituents of OEE are computed using the subsequent

equation:%3
. - Run ti
Availability = Ln e
Total planned time
Performance = Current per formance

Theoretically performance

Good products

Quality =

Total products

These measurements facilitate decision-making about equipment management
and production planning. The OEE is determined using the following mathematical

formula:®* OEE = Availability x Performance x Quality

% Foko Sindjoung et al. 2023; Ma et al. 2023
61 Li et al. 2022

62 3, Kalpande 2014

83 S, Kalpande 2014

® Lietal. 2022
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3. Methodology

The methodology for exploring the use of edge devices in manufacturing is
divided into three parts. Firstly, the advantages of edge devices are highlighted. Secondly,
assumptions are made based on the aforementioned advantages. Finally, research

questions (RQs) are defined, and an overview of their implementation is provided.
3.1. Background

In Peniak et al., industrial devices tend to produce a considerably larger amount
of data compared to other 10T devices, which leads to delays and higher expenses when
transferring data to the cloud. Minimizing reaction times to key events and maintaining
unique security needs are essential in the industrial setting. Hence, transferring
calculations to edge devices within industrial facilities can aid in mitigating these
problems and enhancing the speed of reaction and efficiency of bandwidth. This implies
that certain data processing and storage operations are transitioning from the cloud to

edge. %

S. K. Pal et al. mentioned that edge device plays a crucial role in achieving the

deployment of real-time monitoring and control of manufacturing processes.®

In terms of security, Keyan et al. outlined that conventional cloud computing
necessitates the uploading of all data to the cloud for consolidated processing, which
follows a centralized processing approach. During this procedure, there are potential
hazards such as data loss and data leakage, which cannot ensure the security and
confidentiality of information. Instances such as account passwords, history search
information, and even commercial secrets have the potential to be divulged. Edge
computing exclusively handles tasks inside its own domain, processing data locally
without the need for cloud uploads. This eliminates the hazards associated with network
transmission, ensuring data security. When data is subjected to an assault, it simply

impacts the local data, rather than affecting all data.
3.2.  Approaching

To understand the advantages of the edge device for Industry 4.0 transformation

in manufacturing, in this study, two edge devices are implemented in the manufacturing

8 Peniak et al. 2023
% Surjya Kanta Pal 2022
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environment. This implementation is aimed to stretch out the ability of edge devices to
enhance machine control operations by facilitating faster and more accurate decision-
making processes, leading to improved production efficiency. Moreover, these devices
reduce data processing latency due to their computational capabilities and connecting
directly to data sources. Lastly, their capacity to handle real-time data is going to increase
production processes, allowing for immediate adjustments and enhanced quality control,

therefore aligning closely with Industry 4.0 objectives.

A scoping study was carried out to delineate the main features of this project,
offering valuable insights into the production process. Three RQs are outlined for the
purpose of the project as follows:

How can edge device take part in monitoring manufacturing machine operation?

How does local data processing in edge computing mitigate the risks associated

with network transmission?

In what ways does the shift to edge devices for data processing improve the

effectiveness of real-time monitoring and control in manufacturing processes?
3.3. Define

This section will analyze and define three RQs mentioned in Section 3.2.
Subsequently, an overview of two implementations will be presented to answer the

following questions.
3.3.1. Research Questions 1 and 2

In this project, it is aimed to express the ability of edge devices are integrated
seamlessly into manufacturing infrastructure, gathering information directly from a
manufacturing machine through wires. This integration is crucial for real-time monitoring
since it tracks operational parameters, thereby detecting anomalies and preventing
equipment failure and optimizing production efficiency. With the support of Node-RED,
which is installed on the edge device, the data is then stored locally. Figure 5 illustrates
the flows of data transferring from the manufacturing machine to the edge device.



% wires - Node-RED

Machines Edge device Database

Data flow

Figure 5: Overview of data flow in the implementation

This local processing should enhance data security significantly, mitigating risks

like data loss and leakage that are prevalent in cloud computing models.
3.3.2. Research Question 3

Automation and data interchange have significantly enhanced the performance
and efficiency of production through the implementation of Industry 4.0. An obstacle
faced in Industry 4.0 is the ability to anticipate and avert anomalous actions inside the
production procedure. Real-time data monitoring is increasingly crucial for factory
control in terms of ensuring quality and performance.®’ The capability of edge devices to
process data in real-time and calculate OEE is evident in the implementation, highlighting

the ability to visualize performance, quality, and availability as any modifications occur.

During the implementation, there are some limitations in tracking real total of
production and scraps and measuring the quality in the OEE. In that case, the total of
production and scraps will be inputted by hand and the quality of the production is
assumed to be random numbers which are not less than 90%. However, the total and
scraps are still calculated with real-time. Figure 6 illustrates the overall view of the

implementation.

Availability

E Node-RED > Performance

. ,
l : ' Quality od&
@ , OEE . A
<0 Edge device s,
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Figure 6: Outline of the implementation

7 Li et al. 2022
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4, Experimental Setup

The Lern — und Forschungsfabrik (LFF) is utilized for research, teaching,
qualification, and industry collaboration purposes. It has equipped various manufacturing
machines such as Computerized Numerical Control (CNC) machines, turning machines,
milling machines as well as many automations, robotics, and digital manufacturing in an
advanced industrial environment. In addition, LFF provides an opportunity to apply
theoretical knowledge in a practical setting, working with machinery, tools, and
technologies that are used in the manufacturing industry. Therefore, LFF is an appropriate

place for this research to test and implementing new technologies from the IloT.
4.1. Experimental Machine and Devices

Figure 7 illustrates two edge devices which are implemented in the LFF for
research purposes. The netFIELD Compact X8M is an industrial edge computing device
designed to fulfill the demanding requirements of Industry 4.0 applications. The device
is constructed using the high-performance NXP i.MX 8M Mini Quad-core ARM Cortex-
A53 processor, which offers significant computational capabilities for efficiently
handling intricate tasks in real-time. The gadget is packed with 2 GB DDR4 RAM
(Random Access Memory) and 32 GB eMMC storage, making it suitable for data-

intensive applications.%

]
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Figure 7: netFIELD Compact X8M (left) and RevPi Core (right) in LFF

8 Hilscher Gesellschaft fiir Systemautomation mbH 2023
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On the other hand, the Revolution Pi Core from KUNBUS is a series of
industrial-grade computers based on the Raspberry Pi. These devices are specifically
designed for use in industrial settings, where they modify the well-known and flexible
Raspberry Pi platform for more demanding applications. The Revolution Pi Core models
commonly have ARM processors, such as the Broadcom BCM2835, and are outfitted
with standard Raspberry Pi interfaces, along with a set of GPIO pins for interfacing with

industrial equipment.®®

Both devices are equipped with Node-RED, a tool for implementing simple
automation tasks and quickly creating prototypes. The Table 1 provides technical data of

two edge devices.

Table 1: Technical Data of edge devices

NetFIELD Compact X8M™ Revolution Pi Core’
NXP i.MX 8M Mini Quad-core ARM Cortex-

Processor Broadcom BCM2835
A53

Clock speed | 1.8 GHz 250 MHz

RAM 2 GB DDR4 512 MB

Storage 32 GB eMMC 4 GB

Operating ) Raspbian image on
netFIELD OS on Linux aarch64 (ARMv8-A) )

system Linux ARMv6

Connectivity | Ethernet Ethernet

Power
24V DC 12-24V DC

supply
112 mm x 84 mm x 25 mm

. . (without plugs and mounting bracket)

Dimension 96 x 70 X 22 mm
167 x 118 X 27 mm
(with plugs and mounting bracket)

8 Revolution Pi n.d.
0 Hilscher Gesellschaft fiir Systemautomation mbH 2023
1 Broadcom Corporation 2012
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4.2.  Collecting data from manufacturing machine and storing data

Several machines at the LFF already have built-in IloT capabilities, and
communication issues may be resolved through software solutions. For collecting and
storing data, the edge device, Revolution Pi Core (RevPi Core), a compact industrial
computer, has been chosen. It serves as a flexible and robust solution for various industrial
and automation applications. Revolution Pi Core is connected to RevPi DIO and RevPi
DI devices, as shown in Figure 7, providing customizable Inputs/Outputs (I1/O) options.
These devices contribute to the collection of binary signals (0 and 1) from the bandsaw

system. Figure 8 shows the JAESPA Bandsaw, which is implemented in LFF.

Figure 8: JAESPA Bandsaw

By integrating RevPi Core directly into the bandsaw's signals, the binary data is
accurately tracked with no latency. The Node-RED function, installed on the RevPi Core,
allows for real-time visual representation of the binary data. Table 2 displays the location
of relevant bandsaw signals used for research and linked to RevPi DIO and RevPi DI.
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Table 2: The 1/0 Addresses at the bandsaw and the 1/0 at the Rev Pi

o Bandsaw )
ID | Name Description 1/0 RevPi
Address
2 | Start Start the bandsaw X411 Input_DI_3
3 | Stop Stop the bandsaw X412 Input_DI_4
5 | NOT-AUS Emergency stop button X551 Input_DIO_5
Cutting head moves down. - =
22 | Sigebiigel heben | Cutting process ended. v537 Input_DI_16
Cutting head moves up. - =

Figure 9 illustrates the positions of the button to control the bandsaw. In this
implementation, only three buttons are used, which are signed by numbers 2, 3, 5 in the
Figure 9. The “Sagebiigel senken” and the “Sagebiigle heben” are based on the movement
of the bandsaw. After connecting wires from the bandsaw to the Revpi Core to receive

signal, they are configured in the RevPi Core web, which is able to access via the Internet
Protocol (IP) Address 134.147.229.144, in order to ping in the interface via SSH (Secure

Shell) connection of the Revpi Core.

Figure 9: ID from Bandsaw and configuration in PiCtory

4.3.  Computing and processing real-time data

The implementation of Industry 4.0 has significantly enhanced the productivity
and effectiveness of the industrial sector via the utilization of automation and data
interchange. Edge device has been crucial in facilitating the transition to Industry 4.0,
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where data processing is interconnected via the 1l0T.”> Real-time OEE allows
manufacturers to access a live analytics dashboard, an advanced alarm system, and
ensures transparency in the production line.”® In this implementation, with netFIELD
Compact X8M, OEE demonstrates the capability of processing data in real-time on edge

devices, hence enabling real-time computerization.
4.3.1. OEE calculation

Availability: measures the actual runtime of the equipment compared to the
planned production time. It considers the Availability Loss, which is downtime (including
equipment failures, maintenance, unplanned stops, and changeover time). The formular

of Availability is:
Availability (%) = (Actual runtime / Planned Production time) x 100%
Actual runtime is also calculated as: Planned Production time — Downtime

In LFF — a factory in Lehrstuhl fiir Produktionssystem (LPS) for research and testing
industrial application scenarios, it has been empirically determined that the average

Availability of equipment is 82.235%.

Performance: is calculated based on the ability of a manufacturing process to
shift products during specific time intervals, usually measured within an 8-hour working
day. It gauges the attainment of planned production targets and gradually decreases when

no products are produced.

Quality rate: considers the number of good-quality products produced in relation
to the total number of products produced.

Quality rate (%) = (Good Products / Total Products) x 100%
4.3.2. Live monitoring

With the features that Node-RED has provided, the Node-RED-powered live
OEE Monitoring Dashboard represents a new model in the continuous quest for
manufacturing excellence. It gives an immediate window into production processes,
offering critical insights into the optimization of efficiency, the minimization of

disruptions, and the fostering of continuous improvement.

2 Zhang et al. 2021
B Lietal 2022
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5. Challenges in Implementing edge devices

Before discussing the implementation, this chapter will highlight several
challenges that arose during the process. The mentioned problems took a significant

amount of time to resolve during installation.
5.1. Competencies in programming languages

To serve and reach the purpose of the research, general knowledge about coding
languages is necessary. Two main challenges in coding are pointed out during the

implementation.

Coding often involves abstract concepts that can be difficult to grasp, such as
algorithms, data structures, and design patterns. It is important to maintain a clear and

logical structure when writing about coding concepts to ensure comprehension.”

Moreover, one of the most significant challenges in learning to code is
debugging. Identifying and fixing errors can be time-consuming and frustrating,
especially when errors are cryptic, or the source of the problem is unclear. It may take
time to read through the code to track where errors are occurring, especially in tracking

time for OEE in this research.”
5.2.  Lack of memory

Initially, there was no information available regarding the username and
password from previous testing and implementation. As a result, the device was reset to
its factory settings and updated with the latest image available on the KUNBUS website.
After several experiences with RevPi Core, including getting familiar with the interface,
working with the Linux operating system, accessing via SSH connection, and
downloading 10T applications, some issues arose when using the edge device. However,
it was discovered that the RevPi core had run out of memory, despite being flashed

previously. Figure 10 illustrates the status of memory of the RevPi Core.

4 Sakshi Gupta 2023
> Sakshi Gupta 2023
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tmpfs

tmpfs
tmpfs
tmpfs

Figure 10: Checking storage in RevPi Core through SSH connection

To find the root of the problem, the image package has been checked. The
previously installed image package has nearly filled the storage capacity of RevPi Core.
In order to reduce the amount of memory, the lite version of that image package was

installed. As shown in Figure 11, the storage in /dev/root has been greatly reduced.
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Figure 11: Storage in RevPi Core after re-install image package
For other applications that are missing in the lite version and required for
implementation, they can be installed manually later. Figure 12 illustrates the memory of
the full version image package and its lite version.

)| 2023-01-12-revpi-buster
| 2023-01-12-revpi-buster-lite

Datentragerimagedatei 3.318,568 KB

Datentragerimagedate 1.363.064 KB

Figure 12: Memory of the image package
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6. Implementation and Result

Following the experimental set up, this chapter will present the details of the
implementation using two edge devices in LFF. The first implementation demonstrates
how the edge device can track signals from a manufacturing machine. The second
implementation showcases the edge device's ability to process real-time data and provide

live monitoring.
6.1. Network preparation

This section explains how to access an edge device using an IP address and

discusses the safety of storing data locally on the device.
6.1.1. RevPi Core

The Rev Pi is equipped with an operating system that runs on a Raspbian OS.
Hence, all communication originating from the RevPi Core and transmitted to the
network is comparable to that of a typical computer or Raspberry Pi. The MAC address
of the RevPi Core is associated with the static IP address 134.147.229.144 within the
network. Since the connections are-restricted to the Local Network, there is no
requirement to configure data security: /Access to'the operating system can be achieved
using an SSH connection, which is protected by a login and password. In addition, the
user interface for configuring the input and output settings through web browser is

protected by a username and password.
6.1.2. NetFIELD Compact X8M

NetFIELD Compact is an edge gateway device, which allow user to deploy
workloads in close proximity to industrial machinery, allowing for the dissemination of

I1oT logic and intelligence.

When netFIELD Compact is connected to the netFIELD Cloud through the
internet, user is able to administer device remotely through the netFIELD.io Portal. The
netFIELD Portal serves as the web-based user interface for the netFIELD Cloud. This
connectivity enables the remote management of IloT applications and facilitates the
control and distribution of these applications over the internet. The box's MAC address is
linked to the static IP address 134.147.229.182 on the network. Access to the operating
system can be attained through the netFIELD.io, which required login and password from
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both netFIELD account which is created in netFIELD.io and another account from the
device itself.

6.2. JAESPA Bandsaw

The Figure 13 depicts the transmission of binary data for the bandsaw, as
presented in Table 2. The RevPi Core gathers all the data and then transmits it to Node-
RED, a flow-based programming tool used to integrate these separate data streams. Node-
RED processes and potentially improves the data prior to transmitting it to InfluxDB, a
specialized database designed for efficient storage and retrieval of time-stamped data.
InfluxDB facilitates instantaneous analysis and monitoring of the bandsaw's operational

and performance metrics.

Node-RED

influxdb

Figure 13: Data flow for bandsaw

6.2.1. Collecting data

The Node-RED visual editor, which has been installed in RevPi Core, is able to
access via the IP Address 134.147.229.144:1880. In order to create a working
configuration for a RevPi system using Node-RED, it is necessary to install two essential
node packages: “node-red-contrib-revpi-nodes” and “node-red-contrib-influxdb”. After
installation, the “node-red-contrib-revpi-nodes™ is set up to establish communication with
the RevPi Core by configuring the accurate IP address, hence enabling the transmission
of signal data from the device. In Figure 14, a “inject timestamp” node is set up to activate

every 5 seconds, commencing the process of collecting data at consistent intervals.
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Figure 14: Config for collecting data from Bandsaw

The “revpi-getpin” node is configured to the corresponding input pin as shown
in Figure 15. The server is set as 134.147.229.144:8000. Once access to the RevPi Core

is obtained, select the “Input Pin” corresponding to the input in Table 2.

Edit revpi-getpin node

Delete Cancel m

& Properties & 32 =

CServer 134.147.229 144:3000 v | &
(] Take pin name from payload
@ Input Pin PIN: 1_15_i03 v

= Topic
Figure 15: Config IP and Input signal of RevPi Core

6.2.2. Storing and visualizing data

The data will be stored locally in InfluxDB, which exclusively accepts and stores
data in numerical format. Once the data has been consolidated into a unified message and
formatted correctly, it can be further processed or stored. The “influxdb out” is set up

with a suitable server for data storage as shown in Figure 16.
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Figure 16: Flows for storing data into InfluxDB
To convert the data from “revpi-getpin” from text format to numeric format, it
is necessary to include a “function 23” node in the flow. Code 1 illustrates the code that

use to transform the data from “string” type to numeric.

msg.payload = {
"notaus"” : parseFloat(msg.payload["revpi/single/I 5"]),
"start" : parseFloat(msg.payload["revpi/single/I_3_ie3"]),
"stop": parseFloat(msg.payload["revpi/single/I 4 ie3"]),
"ssenken": parseFloat(msg.payload["revpi/single/I 15 ie3"]),
"sheben": parseFloat(msg.payload[ "revpi/single/I_16_i@3"])

}

return msg;

Code 1: Convert from string to number

Furthermore, the data is presented through a Node-RED dashboard, which offers
immediate feedback on production processes, facilitating prompt decision-making and
efficiency improvements. In Figure 17, the “table function” node contains code which has
been shown in Code 2, creates a table for displaying the data to the “ui_table” node after
joining all five signals from the RevPi Core. Additionally, the “refresh” button node

updates the data when clicked.

join table function _

Refresh

Figure 17: Flow for displaying the dashboard
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In Code 2, the code begins by retrieving any previously stored data from the
flow's context under the key savedData. If no data is found, it defaults to an empty array.
Subsequently, it creates a new object with a timestamp and several other properties that
correspond to the RevPi's I/O pin states. This new object is then added to the beginning
of the tableData array using unshift(). The updated tableData array is then reassigned for
future use in the flow. Finally, the table has the updated tableData, prepared for the next

node in the flow.

tableData = flow.get("savedData") || [];

tableData.unshift({

"timestamp" : new Date().toLocaleString(),
"NOTAUS" : msg.payload["revpi/single/I _5"],
"Start” : msg.payload["revpi/single/I 3 i@3"],
"Stop" : msg.payload["revpi/single/I 4 _i03"],

"Sagebiigel senken": msg.payload["revpi/single/I_15_i@3"],
"Sagebiigel heben" : msg.payload["revpi/single/I 16 _i@3"],
3

msg.payload = tableData;

flow.set("savedData", tableData);

return msg;

Code 2: Creating table

6.2.3. Result

The InfluxDB, which has been installed in RevPi Core, is able to access via the
IP Address 134.147.229.144:8086. In addition, to access the database in InfluxDB,
username and password is required. To visualize the data, InfluxDB requires some
commands for selecting and sorting in database, which is shown in Code 3. Figure 18
shows data that has been retrieve from the RevPI Core, which is automatically updated.

from(bucket: "RUB")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)

|> filter(fn: (r) => r["_measurement"] == "Revpi")

|> filter(fn: (r) => r[" _field"] == "notaus" or r[" field"] ==
"sheben" or r["_field"] == "ssenken" or r["_field"] == "start" or
r["_field"] == "stop")

| > aggregateWindow(every: v.windowPeriod, fn: mean, createEmpty:
false)

|> yield(name: "mean"

Code 3: Selecting data in InfluxDB
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In Code 3, the InfluxDB code is specifically intended for retrieving and
processing data from the bucket "RUB". The query filters the data to a specific time range
which are “v.timeRangeStart” and “v.timeRangeStop”. The “Revpi” measurement then
filters for records whose field has one of five predefined values: “notaus”, “sheben”,
“stop”, “start”, or “ssenken”. After that, it uses an aggregate window to average (mean)
the data points for each window period specified by “v.windowPeriod”. This aggregate

does not produce empty windows if there are no data points (createEmpty: false).

Figure 18: Data for Input START (above) and Input STOP in InfluxDB (below)
Figure 19 illustrates couples of data from Revpi Core that are displaying in the
Node-RED dashboard. Compares to the data in InfluxDB, although the data that display
with Node-RED backend is not required couple lines of code to visualize it, it needs to

have the “refresh” button to update the data.

Figure 19: Data visualized in Node-RED
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6.3. Computing with real-time data

The backend of Node-RED on netFIELD Compact X8M can be reached by using
the IP Address 134.147.229.182:1880. To establish an OEE dashboard using Node-RED,
it is imperative to install the "node-red-dashboard" node package. This package facilitates
the creation of input data for OEE and enables live monitoring of the OEE dashboard.
Figure 20 show an overview of Node-RED flows for calculating and live monitoring OEE
dashboard.

debug 9 ‘
dehug 10
Availability
Refresh Get Info OEE Performance
Quality
OEE
Total input set msg.topic
Scraps input set msg.topic
join
debug 11
Planned Product input set msg.topic
Planned hours input Limit hours set msg.topic

Figure 20: Node-RED flows for calculating and live monitoring OEE dashboard

6.3.1. Phase 1 - Setting input for OEE calculation

Figure 21 illustrates the inputs required for an Overall Equipment Efficiency
(OEE) calculation. The "Total input” and "Scraps input™ nodes presumably gather data
on the overall production and scrap quantities. The "Planned Product Input" and "Planned
hours input™ nodes can be utilized to enter the expected production output and the planned
production time respectively. The "Limit hours” node is set up to limit the input of the
"Planned hours input™ to a maximum of 8 hours per day, ensuring that the working hours

do not exceed this restriction.
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Figure 21: Config flows for Input

As shown in Code 4, the code begins by converting the output from “Planned
hours input” node to a numeric value and assigning it as “input”. If there is no output
from the “Planned hours input”, the default value of 8 is used. The code thereafter defines
a valid range for the “input”, bounded by the minimum value of 0 and the maximum value
of 8. If the “input” is a numerical value and is within the required range, the code proceeds
by returning the message object with the payload attribute assigned to the input value. If
the input falls beyond the permissible range, it will generate a warning in the Node-RED
environment, highlighting the problem and terminating the flow by returning null,

therefore rejecting the “input”.

var input = parseFloat(msg.payload) || 8;
var min = 0;
var max = 8;

if (!isNaN(input) && input >= min && input <= max) {
msg.payload = input;
return msg;

} else {
node.warn("Input is outside the allowed range (" + min + " - " + max
+ II)II);

return null;

Code 4: "Limit hours" configuration for working hour
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Figure 22 illustrates the inputs are further handled by “set msg.topic” nodes,

which may format the incoming data with certain subjects for further downstream

processing.
Total input set msg.topic
Scraps input set msg.topic
join
debug 11 E
Pianned Product Input set msg.topic
Pianned hours input Limit hours set msg.topic

Figure 22: The whole Node-RED flows for input quantities to OEE

The "join" node is set to manually combine four message parts, each identified
by a unique “msg.topic”, into a single key/value object as shown in Figure 23, and it will

output a message when all parts have been received for a comprehensive OEE

computation. The message will be sent to “Get info” node through the “link out”

Edit join node

Delete Cance m

£+ Properties 2 B =

Mode manual ha
Combine each ~ msg. payload
to create a key/value Object b

using the value of msg. topic as the key

Send the message:
« After a number of message parts 4

and every subsequent message.

= After a timeout following the first message

« After a message with the msg.complete property set

W Name

Figure 23: Config join node to join 4 Inputs into one message

6.3.2. Phase 2 - Calculate OEE

Figure 24 illustrates the overall view of phase 2 flow to calculate OEE. There
are two separate ways of data that the node “Get Info” will receive in this phase. The first
one is “Refresh” node, which will let the “Get Info” send the default data to calculate
OEE. The second method involves the “Get Info” function gathering data from the

specified inputs in Phase 1 in order to compute OEE.



34

debug 9
debug 10
Availability
Refresh Get Info OEE Performance
Quality
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Figure 24: Gathering data and calculate OEE

Code 5 shows the code retrieves the timestamp from the system by the time it
receives data from the “Refresh” button node or acquires data from the Phase 1 and then
it establishes the current_date as the beginning of the day (midnight) by resetting the
hours, minutes, seconds, and milliseconds to zero. The work_start_time is calculated by
adding a fixed offset of 21600000 milliseconds (equivalent to 6 hours) to the midnight
timestamp, which reflects the usual start time for a shift. The code also establishes
predetermined values of 7200 for planned_production and 8 for planned_hours, which
may be replaced by values from incoming message in Phase 1. In addition, if there is no
available data for the total and scraps; they will be automatically set to 0.

The script then calculates the current_worktime by determining the number of
hours that have passed since the start of the workday. The program incorporates a
provision to account for shifts that commence after 3 pm (equivalent to 54000000
milliseconds after midnight), by adjusting the wvalues of work_start time and
current_worktime accordingly. After getting the time in the “Get Info” node, the data then

transfers to “OEE” node to calculate.

var current_timestamp = (new Date().getTime());

var current_date = new Date(current_timestamp);
current_date.setHours(9, 0, 9, 9);

var starttime = current_date.getTime();

var work_start_time = starttime + 21600000;

var planned_production = parseFloat(msg.payload.product) || 7200;

var planned_hours = parseFloat(msg.payload.hours) || 8;
var total = parseFloat(msg.payload.total) || ©;
var scraps = parseFloat(msg.payload.scraps) || 9;

var current_worktime = (current_timestamp - work_start_time) / 3600000;
if (current_timestamp > starttime + 54000000) {

work_start_time = starttime + 54000000;

current_worktime = (current_timestamp - work start time) / 3600000,

}s
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msg.payload =

"resettime": starttime,
"currenttime"”: current_timestamp,
"starttime": work_ start_time,
"currentworktime": current_worktime,
"total": total,

"scraps": scraps,

"product”: planned_production,
"hours": planned_hours

}

return msg;

Code 5: Code for getting timestamp and receiving data from "Refresh" button node or from Phase 1

The process of calculating OEE is started by defining variables for
work_start_time, current_time, and the time elapsed since a reset point as shown in Code
6. These variables are taken from the message payload obtained from the “Get Info” node.
The current_worktime is used along with planned_hours and planned_production to

determine the current_plan_production rate.

//Plan:

var work_start_time = msg.payload.starttime;

var current_time = msg.payload.currenttime;

var difftime = (current_time - msg.payload.resettime) / 3600000;

var current_worktime = msg.payload.currentworktime;

var planned_production = parseFloat(msg.payload.product);

var planned_hours = parseFloat(msg.payload.hours);

var current_plan_production = ((current_worktime) / planned hours) *
planned_production;

Code 6: Define time variables

Furthermore, in this OEE calculation, Available is assumed a fixed number of
82.235 and Quiality is a variable that is not affected by the time according to Section 4.3.1,
the calculation of the difftime is then used to set the Performance to 0 from midnight until
a new shift is started at 6 o’clock in the morning. In Code 7, the code calculates
performance based on the ratio of actual total production (total) to the planned production
rate (current_plan_production). If there has been no production yet, performance is
determined by calculating the percentage deviation from the projected production.
Consequently, the performance will gradually decline over time in the absence of output

during a shift.




36

//AVAILABILITY:

var availability = 82.235;

//PERFORMANCE :

var total = parseFloat(msg.payload.total);

if (total === 0) {

var performance = (1 - current_plan production / planned_production)
* 100;
} else {

performance (total / current_plan_production) * 100;

¥
if (difftime >= 0 && difftime < 6) {
performance = 0;

1

Code 7: Calculating for Availability and Performance

Because there is no real data for the shift, the code simulates a quality assurance
process in which a random mechanism determines if a product is good in this research as
shown in Code 8. The quality percentage is determined by dividing the number of good
products by the total number of products, taking into account any defective items.
Furthermore, the quality is assumed to be 100 if there is no input of both total and scraps
from the Phase 1.

//QUALITY:
var goods = 0;
var scraps = parseFloat(msg.payload.scraps);
var quality = 100;
if (total !== 0 && scraps === 0) {
for (var i = 0; i <= total; i++) {
var randomNumber = Math.round(Math.random() * 5);
if (randomNumber !== 0) {
goods++;

}
quality = (goods / total) * 100;
} else if (total !== 0 && scraps !== 0) {
quality = ((total - scraps) / total) * 100,
¥

//OEE:
var oee = (availability * performance * quality) / 10000;

Code 8: Calculating for Quality and OEE
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After calculating all three factors of OEE, the script computes the final OEE by
multiplying the three percentages and then dividing by 10,000 to re-scale to a percentage

format. Code 9 below illustrates a full script of OEE calculation.

//Plan:

var work_start_time = msg.payload.starttime;

var current_time = msg.payload.currenttime;

var difftime = (current_time - msg.payload.resettime) / 3600000;

var current_worktime = msg.payload.currentworktime;

var planned _production = parseFloat(msg.payload.product);

var planned_hours = parseFloat(msg.payload.hours);

var current_plan_production = ((current_worktime) / planned_hours) *
planned_production;

//Calculation OEE:

//AVAILABILITY:
var availability = 82.235;

//PERFORMANCE :
var total = parseFloat(msg.payload.total);
if (total === 0) {

var performance = (1 - current plan_production / planned_production)
* 100;
} else {
performance

(total / current_plan_production) * 100;
s
if (difftime >= 0 && difftime < 6) {

performance = 0;

()

1

//QUALITY:
var goods = 0;
var scraps = parseFloat(msg.payload.scraps);
var quality = 100;
if (total !== 0 && scraps === 09) {
for (var i = 0; i <= total; i++) {
var randomNumber = Math.round(Math.random() * 5);
if (randomNumber !== 0) {
goods++;

}
quality = (goods / total) * 100;
} else if (total !== 0 && scraps !== 0) {
quality = ((total - scraps) / total) * 100,
¥
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//OEE:
var oee = (availability * performance * quality) / 10000;

msg.payload =

{
"availability": parseFloat(availability.toFixed(2)),
"performance": parseFloat(performance.toFixed(2)),
"quality": parseFloat(quality.toFixed(2)),
"oee": parseFloat(oee.toFixed(2)),
"total": total,
"scraps": scraps,
"plannedproduction”: planned_production,
"plannedworktime": planned_hours

}

return msg;

Code 9: Full script of OEE

6.3.3. Result

Figure 25 illustrate the results from the edge device that demonstrate its
capability to process real-time data to calculate OEE. The variables resettime, starttime,
and currenttime indicate that the system:is capable of processing and delivering data with
precision down to the second. The edge device promptly calculates time-sensitive
metrics. The OEE can be computed either when the "Refresh" button is clicked or when

the input from Phase 1 is received.

18.1.2024, 10.28:44 node: debug 10 18.1.2024, 10:28:45 node: debug 9

time: 18.1.2024, 00:00:00
[uTC+1] availability: 82.23
currenttime: 18.1.2024, 10:28:44 performance: 44.01
[uTC+1)

uality: 100
starttime: 18.1.2024, 06:00:00 qualsyy =
[ oee: 36.19

4.478993055555556

total: @

plannedproduction: 7200

plannedworktime: 8

Figure 25: Result when pressing "Refresh™ button (above) and result when receiving input from Phase 1 (below)
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With the Node-RED backend, the edge device also provides the ability to real-
time monitor the OEE by immediately visualizing the performance, quality, and
availability as any modifications occur. Figure 26 shows the gauge nodes of three
components of OEE. The OEE gauge nodes are connected to the OEE function node, in

order to receive data and display it on the dashboard.

Availability ‘
Performance ‘
Quality ‘

OEE

Figure 26: Config flow for the gauge nodes

Then four gauges nodes are configured the output corresponding to the output of

“OEE” node as shown in Figure 27.

[

 Properves [ © Propertes o @ Properties ° © Propernes o

Figure 27: Config data for the gauge nodes
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After configuring every element for the gauge nodes, the interface of the OEE
dashboard is illustrates as shown in Figure 28. When the 'Refresh’ button is pressed or
input is received from Phase 1, the dashboard data will update automatically based on

results of the calculations explained in Sections 6.3.1 and 6.3.2.

= Test

Control OEE Availability

“ Availability Performance Quality

- 82.23 281 I
e 20. 82

Control OEE Availability Performance Quality

“ Availabilty Performance Quaty

\ 82.23 28.5 . @
nned Produsct Input 23

Planned hours input

Figure 28: OEE dashoard when receiving data from Phase 1 (above) and when pressing "Refresh™ button (below)
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7. Evaluation

In the work with RevPi Core, its strong computational capabilities allowed for
accurate and efficient processing of real-time data. It resulted in processing and
visualizing data directly from the bandsaw with Node-RED backend are expected to lead
to more accurate and timely decision-making. The implementation of storing binary
values of the bandsaw to local storage using RevPi Core aids in long-term data analysis
and trend identification, which can be crucial for predictive maintenance and optimizing

the bandsaw's performance (RQ 1).

Moreover, local data storage provides a significant security, as it reduces the
risks associated with remote data breaches and unauthorized external access. Both edge
device ensure security by using login and password authentication. Similarly, the
Influxdb backend also employs this security measure to safeguard the data which are
stored locally on the edge device (RQ 2). It is not necessary to upload data to the cloud

to avoid cyber-attack during the uploading.

A limitation was noticed during the implementation of the edge device. It is not
possible to measure the delay when transferring data from the bandsaw to the Revpi Core

due to the lack of appropriate facilities:

The implementation of netFIELD Compact offers an efficient method for
processing and analyzing real-time data of OEE metrics, leading to improved planning,
and decision-making processes (RQ 3). The successful use of these technologies
highlights the capacity of edge computing to improve manufacturing productivity and

efficiency.

Edge computing plays a significant role in modern manufacturing by potentially
revolutionizing data processing and decision-making processes in the era of Industry 4.0.
While the introduction of edge computing devices such as the RevPi Core and netFIELD
Compact X8M has shown notable reductions in data processing delay, enhanced decision-
making abilities, and seamless integration with existing production systems, there is still
potential of incorporating Al and machine learning in such as detecting scraps for

calculating quality to make OEE more accurate.
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8. Conclusion and Outlook

This thesis has examined the transformative role of edge computing in modern
manufacturing, demonstrating its potential to revolutionize data processing and decision-
making processes in the era of Industry 4.0. Through the implementation of edge
computing devices such as RevPi Core and netFIELD Compact X8M, it has illustrated
substantial improvements in data processing latency, enhanced decision-making
capabilities, and seamless integration with existing manufacturing systems. Despite the
limitation in the input data that has been mentioned in the Sections 3.3.2 and 7, the results
emphasize both the improvements in productivity as well as the obstacles and remedies
involved in using edge computing in manufacturing settings. Furthermore, the research
underscores the importance of edge computing in enabling more sustainable, flexible, and

secure manufacturing operations.

This work shows the transformative impact of edge computing and its utilization
in manufacturing. Despite the limitations in implementing, the use of edge devices can
demonstrate substantial improvements in data processing latency and decision-making.
Further implementation is possible that could illustrate a significant reduction in time of
data processing compared to cloud computing or fog computing. By implementing
machine learning, the binary signal data is analyzed identify subtle changes in machine
operation that precede failures. This allows for timely maintenance actions to be taken
before breakdowns occur, improving overall efficiency and reducing downtime.
Therefore, edge device could predict machinery failure or required maintenance more
accurately. Moreover, edge device could greatly enhance the precision of OEE
calculations by enabling predictive analytics for equipment failure, quality defect

forecasting, and optimization of performance parameters in real-time.
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10. Affidavit

I hereby affirm in lieu of oath

- that I have written this academic thesis independently and have used only the resources
listed in the attached list.

- that this academic paper has not been submitted to any other examination authority in

the same or a similar form.

- that | have clearly identified any passages taken verbatim or in spirit from published or

unpublished sources.

Joe
Bochum, 12.02.2024 /Wa(/

[Place, date] [Signature]

Mechanical Engineering Examination Regulations 2013 (Bachelor & Master)
8 Section 14 Failure, cheating and breach of regulations

(1) If the candidate attempts to influence the result of an examination by cheating, the
examination in question is to be assessed as 5.0 ("fail™) or "fail". The respective examiner
or invigilator will record the assessment.-The-assessment is carried out by the examination
board. In the event of multiple or other serious attempts at cheating, the candidate may be

excluded from taking further examinations or exmatriculated.

(4) The submission of plagiarized material for project work, course-related assignments

or the Master's thesis is considered cheating in accordance with para. 1.
§ Section 63 Higher Education Act - HG

(5) The universities and the state examination offices can demand and accept an
affirmation in lieu of an oath from the examination candidates that the examination work
has been carried out by them independently and without unauthorized external assistance.

Anyone who wilfully

(2) 1. violates a regulation of a university examination regulation concerning cheating in

examinations or
(3) 2. against a corresponding regulation of a state or ecclesiastical examination regulation

(4) is in breach of an administrative offence. The administrative offence may be punished

with a fine of up to 50,000 euros. The universities may regulate the details in regulations.
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The competent administrative authority for the prosecution and punishment of
administrative offences according to sentence 2 number 1 is the Chancellor and according
to sentence 2 number 2 the State Examination Office. In the event of multiple or other

serious attempts at cheating, the candidate may also be exmatriculated.
8 Section 156 StGB False affirmation in lieu of an oath

Anyone who makes a false affidavit before an authority responsible for taking
an affirmation in lieu of an oath or makes a false statement in reliance on such an affidavit

is liable to a custodial sentence not exceeding three years or a monetary penalty.
8 Section 161 StGB Negligent false statement;
Negligent false affirmation in lieu of an oath

(1) If one of the offences specified in sections 154 to 156 has been committed through
negligence, a custodial sentence not exceeding one year or a monetary penalty shall be

imposed.

(2) The offence shall not be punishable if the offender corrects the false statement in good

time. The provisions of section 158 (2) and (3) shall apply mutatis mutandis.
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