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Abstract

Kaolinite, a clay mineral of significance in various industrial contexts, intro-
duces unique challenges to fluid dynamics due to its particulate nature. The
investigation centers on unraveling the intricate interplay between the rhe-
ological characteristics of kaolinite suspension and the geometric attributes
of a sudden expansion channel across a Reynolds number range of 20 to 100.
The outcomes of this research contribute to an enhanced comprehension of
kaolinite suspension dynamics, offering potential optimizations for indus-
trial processes.

In this thesis, a numerical approach is utilized to explore the behavior of
a water–kaolinite suspension characterized by varying kaolinite concentra-
tions, specifically 15wt%, 20wt%, and 28.5wt%. The suspension is conceptu-
alized as a Bingham fluid, drawing upon rheological data obtained from ex-
isting literature. The chosen Bingham fluid model provides a well-founded
basis for simulating the viscoplastic behavior of the suspension, paving the
way for a comprehensive understanding of its rheological response across a
spectrum of concentrations.

The meshing process is carefully undertaken to ensure accuracy and com-
putational efficiency. The simulation tool employed for this investigation is
ANSYS Fluent, a widely recognized and extensively utilized computational
fluid dynamics (CFD) software. The chosen simulation domain is charac-
terized by a sudden expansion with a geometric ratio of 3, a pivotal aspect
influencing the overall flow dynamics.

Following a sudden expansion, symmetric recirculations are observed in Kao-
fluids at corners, resembling the behavior of n = 1 power-law fluids at low
Reynolds numbers. The examination of the characteristic length for different
Kao-fluids and the analysis of velocity profiles for each fluid are conducted.
Additionally, a comparative analysis between simulation and theoretical re-
sults is performed for the Darcy friction factor of the working fluids.
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Chapter 1

Introduction

1.1 Non-Newtonian fluid

1.1.1 Definition

A fluid is a substance that changes shape when subjected to shear stress or an
external force. Liquid and gas can be categorized as fluid, which are found
vastly in the nature and technical applications such as: turbines and pumps,
waterfall, air-conditioner, mechanical wings, etc.

τ = µ(−du
dy

) = µγ̇ (1.1)

Viscosity, a measure of a fluid’s resistance to deformation, is used in the study
of different types of fluids to classify them. Newtonian fluids have constant
viscosity because of the linear relationship between shear stress and shear
rate, as described by Newton’s Law of Viscosity above.

FIGURE 1.1: The relationship between shear stress and velocity gradient [1].
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Non-Newtonian fluids adjust viscosity under shear stress, being either more
liquid or more solid. These fluids have complicated rheological features in-
clude yield stress, viscoelasticity, and thixotropy. A viscoplastic fluid is one
that flows only when the shear stress surpasses a value known as the yield
stress.

FIGURE 1.2: Classification of non-Newtonian fluids [2].

Below are three types of time-independent non-Newtonian fluid behavior:

Type Mathematical Model

Shear-thinning or pseudoplastic fluids Power-law model:

τ = K
(

du
dy

)n

η = K
∣∣∣ du

dy

∣∣∣n−1
, with n < 1

Viscoplastic fluid behavior Bingham plastic model:

∂u
∂y =

{
0, if τ < τ0
τ−τ0
µ∞

, if τ ≥ τ0

Shear-thickening or dilatant fluid behavior Power-law model:

τ = K
(

du
dy

)n

η = K
∣∣∣ du

dy

∣∣∣n−1
, with n > 1

TABLE 1.1: Mathematical Models for Different Fluid Behav-
iors [3]

This study focuses on the behaviour of non-Newtonian fluids through a sud-
den expansion: three Bingham fluids which are Kaolinite 15, 20 and 28.5.
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1.1.2 Applications

We come into contact with non-Newtonian fluids more often than we imag-
ine. Non-Newtonian fluids are present in a variety of goods.

Smart fluids
Smart fluids are fluids that change their properties (e.g. viscosity) under the
effect of an electric field or a magnetic field. Two example for these fluids are
the electrorheological fluid (ErF) and the magnetorheological fluid (MrF). In
reaction to an electric field, the viscosity of an ErF can change incredibly fast.
As a result, it is used in quick-response hydraulic valves. The magnetorhe-
ological damper is created using MrF. This damper enables for continuous
modification of the shock absorber’s damping characteristic by varying the
magnetic field intensity. So it is used for stress absorption in prosthetic legs
as well as vehicles such as cars and helicopters.

FIGURE 1.3: Smart fluid mechanism [4].

Artificial organs
The medical field advances via the study of non-Newtonian fluid. Human
organs that are synthetic have been developed and mostly used in cases of
organ failure, work exactly like their natural counterparts, the heart, kidneys,
and livers. Artificial organs are used to replace the donor organs entirely in
the event that transplantation is not feasible, or to bridge the transplantation
gap. The avoidance of blood clotting is a crucial use for the construction of
these artificial organs. This was made possible by studies on blood, a non-
Newtonian fluid.
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FIGURE 1.4: Viscosity of blood [5].

Food
Aside from these uses, non-Newtonian fluid behavior may be seen in foods
such as low-fat mayonnaise, yogurt, jam, ketchup and so on. Alginate sta-
bilized thixotropic gels are frequently used to stabilize emulsions and the
consistency of foods like ice cream.

FIGURE 1.5: An example in food product [6].
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1.2 Literature review

When a Newtonian fluid undergoes a sudden expansion at low to moderate
Reynolds numbers, the resulting flow exhibits a pair of symmetric recircu-
lating swirls along the downstream walls. The symmetry of these vortices
transitions to asymmetry when the Reynolds number (Re) surpasses a criti-
cal value. In the case of planar geometry, the expansion ratio (ER) is denoted
as the ratio of the height of the outlet channel (H) to the height of the input
channel (h).

The phenomenon of flow bifurcation in channels featuring a sudden planar
expansion has been a subject of numerous experimental investigations dat-
ing back to the early 1970s. Durst et al. [7] and Cherdron et al. [8] employed
laser Doppler anemometry (LDA) to examine the impact of the aspect ratio
of the tested geometry and to observe vortices at both salient corners. In a
more recent study, Fearn et al. [9] explored a planar expansion with an ex-
pansion ratio (ER) of 3, revealing an identical flow bifurcation occurring at
Re = 40.5. Drikakis [10] noted in his investigation that an increase in the
expansion ratio leads to a reduction in the critical Reynolds number for the
symmetry-breaking bifurcation, considering various ratios. All of these in-
vestigations were specifically focused on Newtonian fluids.

In practical situations, fluids coursing through pipes deviate from Newto-
nian behavior and present intricate rheological characteristics. Depending on
the type of fluid, these may include shear-thinning or shear-thickening vis-
cosity. Consequently, delving into the realm of non-Newtonian fluid flow in
planar expansions becomes imperative. Commencing with fundamental rhe-
ological models is essential to comprehend the influence of diverse rheolog-
ical properties on flow characteristics. Elevated Reynolds numbers have the
potential to induce turbulent flow, particularly when the non-Newtonian so-
lutions are not highly concentrated. Given the well-established significance
of sudden expansion geometry in studying laminar flow instabilities at high
Reynolds numbers, it has naturally captivated the interest of researchers in
non-Newtonian fluid mechanics. Their focus centers on unraveling the intri-
cate interplay between these bifurcations and fluid rheology, with a specific
emphasis on viscoelasticity. Notably, the study of non-Newtonian blood flow
in arterial stenoses and abdominal aneurysms is directly connected to the in-
vestigation of flow in expansions.
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Multiple numerical investigations have utilized the power-law viscosity model
to scrutinize the flow behavior of shear-thinning and shear-thickening flu-
ids in planar sudden expansions. This model, characterized by its simplic-
ity, proves particularly effective for describing the traits of shear-thinning,
shear-thickening, and Newtonian fluids. By adjusting the power-law index
n, the model adeptly captures the distinctive characteristics of these fluid
types within a purely viscous solution.

Mishra and Jayaraman [11] studied the characteristics of steady asymmetric
flow patterns in shear-thinning fluids within planar sudden expansions with
a high expansion ratio (ER = 16). In a separate investigation, Manica and
De Bortoli [12] employed numerical methods to analyze the flow of power-
law fluids in a planar sudden expansion with ER = 3 for various power-law
indices (n: 0.5, 1, and 1.5). Their study explored vortex properties for these
n values within a Reynolds number range of 30 ≤ Re ≤ 125. The results
indicated that shear-thickening fluids exhibited the lowest critical Reynolds
number, and the flow bifurcation for shear-thinning fluids occurred at a crit-
ical Reynolds number higher than that for Newtonian fluids. Furthermore,
Neofytou [13] investigated the influence of Reynolds number on flow pat-
terns and the transition from symmetric to asymmetric flow in power-law
fluids, considering power-law indices in the range 0.3 ≤ n ≤ 3, within a pla-
nar sudden expansion with ER = 2.

Numerous researchers have endeavored to employ both commercial and open-
source algorithms for numerical simulations of power-law fluid flow in a
planar sudden expansion with ER = 3. It has been observed that achieving
convergence in the solutions can be a substantial challenge, especially when
dealing with pronounced non-Newtonian behavior, characterized by either
large or small values of n in the power-law model. Poole and Ridley [14]
utilized Fluent software, reporting an inability to attain a converged solution
for n < 0.4. Similarly, Ternik et al. [15] asserted that no converged solutions
were obtained for n < 0.6 when utilizing the OpenFOAM software.
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1.3 Objectives

The thesis is going on studying about the flow of three Kaolinite fluids through
a sudden expansion by using ANSYS Fluent as the simulation software:

• Chapter 2 describes governing equations, fluid properties, and numer-
ical method used in this study.

• Chapter 3 details the domain, the using mesh and the simulation set-
tings.

• Chapter 4, the simulation results are discussed.

• Chapter 5 presents final remarks on the analysis.
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Chapter 2

Background theory

2.1 Problem description

The study case is illustrated by the figure 2.1. A small channel of width h
expands to the bigger one of width H, with the ratio ER = H/h = 3 : 1. The
origin of the y co-ordinate is lied at the center of two channels. The small
channel’s length is LC = 50h and the large one is LE = 150h.

FIGURE 2.1: Two-dimensional 3:1 sudden planar expansion diagram.
Adopted from Dhinakaran et al. [16]

The inlet is far from the expansion location to ensure that the flow to become
fully developed before the interest incident occurs. It is the same for the
outlet to be located far from expansion plane.
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2.2 Governing equations

The continuity equation governs the 2D laminar, steady and incompressible
flow

∂u
∂x

+
∂v
∂y

= 0 (2.1)

with the momentum equations:

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+

(
∂τxx

∂x
+

∂τxy

∂y

)
(2.2)

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+

(
∂τxy

∂x
+

∂τyy

∂y

)
(2.3)

respectively, u and v indicate the velocity factors in the x and y directions; p
is the pressure and ρ is the density.

The Bingham fluid model behaves like a Newtonian fluid when it flows, the
shear rate is proportional to the applied shear stress. Otherwise, if the ap-
plied shear stress does not exceed the yield stress at a part, it will stay still.

∂u
∂y

=

0, if τ < τ0

τ−τ0
µ∞

, if τ ≥ τ0

(2.4)

These fluids in this work are Bingham fluid models have the same power-law
index, n = 1 and the same critical shear rate 0.01.

Fluid Density Viscosity, K Yield stress
Kao 15 1101.694915 0.001182007 0.08
Kao 20 1140.350877 0.001265640 0.4
Kao 28.5 1212.686567 0.001450325 2

TABLE 2.1: Properties of three Kaolinite 15, 20, 28.5

The pressure drop (∆P) can be accurately determined using the Darcy–Weisbach
equation[17]:

∆p
L

= fD · ρ

2
· v2

DH
(2.5)

Where:

• ∆p
L is the pressure loss per unit length (SI units: Pa/m).
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• fD is the Darcy friction factor.

• ρ is the density of the fluid (SI units: kg/m³).

• DH is the hydraulic diameter of the pipe (for a circular section, DH = 2h
for the small section and DH = 2H for the large section; otherwise,
DH = 4A

P for a pipe of cross-sectional area A and perimeter P) (SI units:
m).

• v is the mean flow velocity, experimentally measured as the volumetric
flow rate Q per unit cross-sectional wetted area (SI units: m/s).

The friction loss for Bingham plastics in fully developed laminar pipe flow
is described by the Buckingham–Reiner equation[18], expressed in a dimen-
sionless form as follows:

fL =
64
Re

[
1 +

He
6Re

− 64
3

(
He4

f 3Re7

)]
(2.6)

where:

• fL: Laminar flow Darcy friction factor (SI units: dimensionless)

• Re: Reynolds number (SI units: dimensionless)

• He: Hedstrom number (SI units: dimensionless)

The Reynolds number and the Hedstrom number are respectively defined as:

Re =
ρvD

µ
(2.7)

He =
ρD2τo

µ2 (2.8)

where:

• ρ: Mass density of the fluid (SI units: kg/m³)

• µ: Dynamic viscosity of the fluid (SI units: kg/m s)

• D: Diameter of circular pipe, here D = h or D = H (SI units: m)

• v: Mean flow velocity (SI units: m/s)

• τo: Yield point (yield strength) of the fluid (SI units: Pa)
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2.3 Simulation software

ANSYS Fluent is a computational fluid dynamics (CFD) software widely
used for simulating fluid flow and heat transfer in engineering applications.
The basis of it is the finite volume method, a numerical technique for resolv-
ing fluid flow-related partial differential equations. Renowned for its adapt-
ability, ANSYS Fluent enables scientists and engineers to simulate a wide
range of fluid dynamics situations, such as heat transfer, multiphase inter-
actions, laminar and turbulent flows. Users of the program may study and
visualize complicated fluid behavior in a variety of sectors, including manu-
facturing, aerospace, automotive, and energy. The software offers a full suite
of tools for pre-processing, simulation, and post-processing.

A numerical method for resolving partial differential equations (PDEs), es-
pecially those that deal with fluid flow and heat transfer, is the Finite Volume
Method (FVM). In simulations of computational fluid dynamics (CFD), it is
often used. The following information pertains to the Finite Volume Method:

• Basic Principle: A continuous domain is discretized by FVM into a col-
lection of discrete control volumes. These control volumes form the
building blocks for the numerical solution of PDEs.

• Control Volumes: The domain is divided into control volumes, each
enclosing a finite portion of the domain. Integral quantities (mass, mo-
mentum, energy) are conserved within each control volume.

• Conservation Laws: FVM is based on the conservation laws of mass,
momentum, and energy. These laws are converted into algebraic equa-
tions for each control volume.

• Integral Form of PDEs: governing PDEs are converted from their dif-
ferential form to an integral form over each control volume using the
Gauss divergence theorem.

• Discretization: The integral equations are then discretized by approx-
imating the spatial and temporal derivatives with suitable difference
schemes. Common discretization techniques include central differenc-
ing for spatial terms and explicit or implicit schemes for time integra-
tion.

• Control Volume Balance: The conservation equations are applied to
each control volume, leading to a system of algebraic equations. Fluxes
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across the faces of the control volumes represent the interactions be-
tween neighboring volumes.

• Solver: The resulting system of algebraic equations is solved iteratively
to obtain the solution at each discrete point in the domain. Iterative
solvers, such as the SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithm, are often used in fluid flow simulations.

• Boundary Conditions: Boundary conditions are applied to the control
volumes on the domain boundaries, specifying the behavior of the flow
at those locations.

• Accuracy and Convergence: The accuracy of FVM depends on the grid
resolution, with finer grids providing more accurate results. Conver-
gence is achieved when the solution no longer changes significantly
with each iteration.

• Applications: FVM is well-suited for a wide range of applications, in-
cluding fluid flow, heat transfer, and combustion simulations. It is par-
ticularly popular in CFD due to its ability to handle complex geometries
and conservation principles.
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Chapter 3

Computational Implementation

Numerical simulations are worked with ANSYS Fluent 2023 R1, which is a
Finite Volume-based software.

3.1 Computational domain and mesh

FIGURE 3.1: The domain of the flow

The domain for the working flow is defined as shown in Fig. 3.1. The in-
let is configured with a velocity calculated from the Reynolds number and
other fluid properties. The outlet is set as a pressure outlet, with the ambient
pressure equal to 1 atmosphere (normal conditions). The smaller part of the
tube is 50h in length, while the larger part is 150h. All walls are considered
no-slip walls.
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The structured mesh is used for the simulation. The mesh employed in this
study plays a crucial role in accurately capturing the flow characteristics
within the defined domain. A well-structured mesh is essential for achieving
reliable and precise numerical simulations. In our analysis, a mesh compris-
ing 124,450 cells has been utilized. It provides sufficient accuracy to 1× 10−7

with appropriate time-consuming for Re ≤ 100. Fig. 3.2 gives an illustration
of the used mesh.

FIGURE 3.2: The utilized mesh

The mesh covers the entire computational domain, including both the smaller
and larger sections of the tube. This thorough meshing approach allows for
a detailed investigation of flow behaviors in various regions. The utilization
of no-slip walls in the simulation ensures that the fluid interacts realistically
with the boundaries, enhancing the accuracy of the results.

Additionally, the mesh is non-uniform, featuring higher resolution near the
walls and the sudden expansion region. In contrast, lower resolution is ap-
plied in other regions. The intentional decision is to refine the mesh in areas
where there are notable alterations in flow or boundary effects. This ensures a
more accurate representation of how the fluid behaves in these crucial zones.
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3.2 Solver setups

The mesh is drawn in millimeter for convenient purpose, but when it comes
to the real case it must be scaled to the meter unit, as is shown in the Fig. 3.3

FIGURE 3.3: Scaling the mesh

The velocity inlet must be included in the reference value in the set up pro-
cess of the Fluent application:

FIGURE 3.4: Setting up the velocity inlet
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Then, the viscous model should be chosen as laminar

FIGURE 3.5: Choosing viscous model

For boundary conditions, all walls must be set to wall as stand for stationary
wall. The inlet is velocity inlet and the outlet is pressure outlet.

The solution method that was used is SIMPLE. While alternative methods,
such as Couple, have been explored, their significant time requirements make
it impractical to execute the simulation on standard computational power.

FIGURE 3.6: Selecting the method
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The default residual values are set at 1 × 10−6. However, to enhance the ac-
curacy of the results, this study extends the range to 1 × 10−7. Consequently,
the residuals for continuity, x-velocity, and y-velocity need to be adjusted for
each individual case during the simulation runs.

FIGURE 3.7: Adjusting the residual values

Regarding non-Newtonian fluids, running the solver directly is not feasible
due to the absence of initial values for yield shear stress. Therefore, an ini-
tialization step becomes imperative. To make it close to the real case, the
same density and viscosity (K) are employed for the first 100 steps. Subse-
quently, the viscosity is adjusted to Herschel-Bulkley, and the parameters for
the power-law model are put in (Fig. 3.8).

FIGURE 3.8: Bingham model material (n = 1)
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Chapter 4

Result and discussion

4.1 Recirculation

4.1.1 Recirculation images

Doing the simulation of Kaolinite suspension of 15wt%, 20wt% and 28.5wt%
in a sudden expansion of ratio 3 within the range of Reynolds number from
20 to 100 are carried out in this part. Various results for the streamline and
velocity magnitudes are then discussed and analyzed.

As stated in Dhinakaran’s work [16], the flow bifurcation into a sudden ex-
pansion for non-Newtonian fluids would result asymmetric recirculation at
the bottom and top corner at large Reynolds number. However, for smaller
Reynolds number, the shape of recirculations are symmetric with respect
to the horizontal axis. This study is conducted at a low Reynolds number
(20 ≤ Re ≤ 100) with the power-law index n = 1, so the symmetric shape is
acquired.

FIGURE 4.1: The streamline results in Dhinakaran et al. [16]



Chapter 4. Result and discussion 19

FIGURE 4.2: Recirculation of Kao 15wt% Re = 40
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FIGURE 4.3: Recirculation of Kao 15wt% Re = 70
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FIGURE 4.4: Recirculation of Kao 15wt% Re = 100
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FIGURE 4.5: Recirculation of Kao 20wt% Re = 40
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FIGURE 4.6: Recirculation of Kao 20wt% Re = 70
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FIGURE 4.7: Recirculation of Kao 20wt% Re = 100
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FIGURE 4.8: Recirculation of Kao 28.5wt% Re = 40
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FIGURE 4.9: Recirculation of Kao 28.5wt% Re = 70
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FIGURE 4.10: Recirculation of Kao 28.5wt% Re = 100

With the power-law index n = 1, the Reynolds number range in this study
(20 ≤ Re ≤ 100) does not surpass the critical Reynolds number for the bifur-
cation to make the recirculations be asymmetric. The shape of those swirls
are almost the same; since the limitation of the software, it cannot be dis-
played the identical curves onto the images. And they just have a significant
small difference in their size (up to 1 × 10−7), it will be more detailed in the
section 4.1.3.



Chapter 4. Result and discussion 28

FIGURE 4.11: Water streamline at Re = 40

When comparing them with a traditional Newtonian fluid, for instance, wa-
ter in this case. There are bigger swirls at both corners. Also, these stream-
lines are perfect symmetric through the x-axis for low value of Re.

FIGURE 4.12: Water streamline at Re = 70

FIGURE 4.13: Water streamline at Re = 100

But when the Re is become bigger, the streamline creates asymmetric swirls at
two corners. The upper swirl is smaller comparing to the one at the bottom.
Since the viscosity of water is lower than the Kao-family, its streamline is
more visible within the software’s limitation. The result here is also agreed
with the work of Dhinakaran [16] for larger value of Reynolds number. Since
the viscosity of water is low, the phenomenon happens earlier with just a little
increase in Reynolds number.
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4.1.2 X-wall shear stress

To have a better view at the characteristic length Xa and Xb of the recircu-
lations, it is crucial to analyze a graph illustrating the x-wall shear stress to
observe alterations in pressure. As the pressure switches in the direction
along the x-axis, the recirculation segment stops and at that point the bound-
ary between this segment and the bifurcation flow is defined. Notably, due
to the symmetric nature of both recirculations, the outcomes for the top wall
need not be presented separately, as they mirror those for the bottom wall.

FIGURE 4.14: X-wall shear stress at bottom wall for Kao15

FIGURE 4.15: X-wall shear stress at bottom wall for Kao20
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FIGURE 4.16: X-wall shear stress at bottom wall for Kao28.5

In Fig. 4.14 the distinctions in the length Xa are evident, as three lines are
distinctly separated when crossing the x-axis. However, in the Fig. 4.15 and
Fig. 4.16, the trends of the lines converge. This phenomenon can be attributed
to an increase in critical shear stress, leading to heightened fluid inertia and
consequently requiring a greater force to drag the group. Due to the rela-
tively modest Reynolds numbers, the difference is insufficient to yield a huge
leap in the characteristic length Xa.

FIGURE 4.17: X-wall shear stress at bottom wall for Re = 40
with different fluids
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FIGURE 4.18: X-wall shear stress at bottom wall for Re = 70
with different fluids

FIGURE 4.19: X-wall shear stress at bottom wall for Re = 100
with different fluids

When the Reynolds number is small (Fig. 4.17), the characteristic length ap-
pears to exhibit reduced dependence on fluid properties, with closely aligned
values for Xa among different fluids. However, as the Reynolds number in-
creases, the points of directional change in the X-wall shear stress diverge
more significantly. In the instance of the highest Reynolds number consid-
ered, Re = 100 (Fig. 4.19), noteworthy disparities emerge in the placement
of points of interest. This discrepancy can be attributed to the substantial
inertia present in the Kao 28.5wt% fluid, which delay the amplification of
recirculation to a greater extent.
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4.1.3 The characteristic length

To generalize the characteristic length changing across the Reynolds num-
ber for three different fluids, the Fig. 4.20 shows the graph for Xa respect to
Reynolds numbers.

FIGURE 4.20: The characteristic length Xa respects to Reynolds
number

The Xa for either Kao 15wt% and Kao 20wt% starts lower than that for Kao
28.5wt%, which respect to the Reynolds number from 20 to 40. In contrast,
when the Reynolds gets bigger, for around 43, the trend for Xa is moving in
the opposite way. Kao 15wt% and Kao 20wt% both witness a steadily raise in
the Xa and the Kao 15wt% has a steeper slope. Meanwhile, the Kao 28.5wt%
still grows up but with a much more lower slope and falls behind those two
after around Re = 43.

As in Table 4.1, the difference for Xa and Xb is insignificant, so it does not
exhibit a notable impact on the overall trends. Consequently, the decision is
made to keep the graph for Xb out of the visual representation to maintain
clarity and focus on the more influential aspects of the data.

Re Xa Kao15 Xb Kao15 Xa Kao20 Xb Kao20 Xa Kao28.5 Xb Kao28.5
40 0.0023278 0.0023276 0.0023371 0.0023366 0.0023447 0.0023441
70 0.0025412 0.0025411 0.0023711 0.0023709 0.0023544 0.0023541

100 0.0029149 0.0029149 0.0024434 0.0024433 0.0023750 0.0023748

TABLE 4.1: Difference between Xa and Xb for Kaolinite-s
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FIGURE 4.21: The characteristic length Xa and Xb for Water

The asymmetric flow phenomenon happens earlier for water, occurring ap-
proximately within the range of 60 < Re ≤ 70. The bifurcation during sud-
den expansion creates two distinct swirls at the bottom and top salient cor-
ners. Notably, a significant transition is observed in the characteristic length
Xa, leading to a marked shift in flow behavior towards turbulence at Re = 70.
This turbulent flow pattern is demonstrated in the streamline representation
shown in Section 4.1.1.
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4.2 Velocity profile

The part below shows all images about velocity vector profile for conducted
cases:

FIGURE 4.22: The velocity profile for Kao 15wt% a) Re = 40; b)
Re = 70; c) Re = 100
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FIGURE 4.23: The velocity profile for Kao 20wt% a) Re = 40; b)
Re = 70; c) Re = 100
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FIGURE 4.24: The velocity profile for Kao 28.5wt% a) Re = 40;
b) Re = 70; c) Re = 100

The inlet velocity increases with the rising Reynolds number. At the bottle-
neck position, bifurcation commences, leading to a decrease in flow speed as
it diffuses into the expansion chamber. The diminished velocity is approxi-
mately one-third of the original velocity from the upstream channel, as de-
noted by the color gradient. This finding aligns with theoretical predictions
derived from the conservation of flow rate.

V̇upstream = V̇downstream => uus Aus = uds Ads => uus = 3uds
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FIGURE 4.25: The velocity profile for Re = 40 a) Kao 15wt%; b)
Kao 20wt%; c) Kao 28.5wt%
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FIGURE 4.26: The velocity profile for Re = 70 a) Kao 15wt%; b)
Kao 20wt%; c) Kao 28.5wt%
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FIGURE 4.27: The velocity profile for Re = 100 a) Kao 15wt%; b)
Kao 20wt%; c) Kao 28.5wt%

When combining three Kaolinite fluids at the same Reynolds number, the
differences in the results are relatively minor. The most notable variation
occurs at the bottleneck, specifically during the sudden expansion, where
the velocity vector of the Kaolinite fluid with higher density shows a larger
magnitude. However, at low Reynolds numbers (refer to Fig. 4.25), this dis-
crepancy is not substantial.
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4.3 Darcy friction factor

Utilizing Equation 2.5, the Darcy friction factors were computed based on
simulation results. Simultaneously, the theoretical Darcy factors were deter-
mined using Equation 2.6.

FIGURE 4.28: Comparing theoretical and simulated Darcy fric-
tion factors for Kao 15wt% a)Small chamber b) Large chamber

FIGURE 4.29: Comparing theoretical and simulated Darcy fric-
tion factors for Kao 20wt% a)Small chamber b) Large chamber

FIGURE 4.30: Comparing theoretical and simulated Darcy fric-
tion factors for Kao 28.5wt% a)Small chamber b) Large chamber
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The calculation process proceeds as follows: the simulation results are eas-
ily obtained through direct calculation from the Darcy-Weisbach equation
(Equation 2.5). On the other hand, the theoretical results pose a challenge
as the equation demands an iterative approach. Overcoming this intricacy
necessitated the implementation of a Python programming solution to itera-
tively derive the theoretical values.

The outcomes exhibit remarkable similarity between the theoretical and sim-
ulation results, with an error margin of less than or equal to 2.07%. The re-
duction in velocity post the sudden expansion event results in a larger Darcy
factor in the larger chamber compared to the smaller one, despite employing
the same investigatory fluid. Across various working fluids, a substantial in-
crease in the Darcy factor is observed when the rheological properties of the
fluid manifest increased resistance to flow.
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Chapter 5

Conclusion

This thesis investigates a study case for three different types of Kaolinite fluid
family, for which Kao 15wt%, 20wt% and 28.5wt%. The expansion ratio (EH),
which is the height of output channel divided by the height of the input chan-
nel is 3. The mesh was used with 124450 cells. The numerical approach was
conducted for the low Reynolds number ranging from 20 to 100.
The main conclusion for this study is listed as the following:

• After the sudden expansion, the Kao-fluids exhibit symmetric recircu-
lations at salient corners, aligning with findings from previous studies
on power-law index n = 1 fluids at low Reynolds number. For water
the flow becomes asymmetrical starting from Re = 60 or so; however,
for Kao 15wt%, 20wt%, 28.5wt%, the flow is still symmetrical at Re =
100.

• The characteristic length exhibits minimal dependence on the proper-
ties of fluids when the Reynolds number is small. Instead, it is more
likely to be influenced by the Reynolds number itself, particularly when
dealing with low-velocity flows.

• The characteristic length undergoes a change in its trend at a critical
Reynolds number across the Kao-family fluids. It is significantly smaller
for non-Newtonian fluids compared to Newtonian fluids.

• The velocity profiles for different Kao-fluids tend to be nearly identical
at the same Reynolds number. The most significant deviation occurs
precisely at the re-entrant corner.

• Post-expansion, the larger chamber shows a higher Darcy factor than
the smaller one, despite using the same fluid. Across fluids, a notable
Darcy factor increase is observed with increased rheological resistance
to flow.
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TABLE A.5: Values of Xa for Kao 15, Kao 20, and Kao 28.5

Re Xa for Kao 15 Xa for Kao 20 Xa for Kao 28.5

20 0.002298 0.002341 0.002349
30 0.002301 0.002336 0.002345
40 0.002327 0.002337 0.002344
50 0.002379 0.002344 0.002346
60 0.002449 0.002355 0.002349
70 0.002541 0.002371 0.002354
80 0.002645 0.002391 0.002360
90 0.002770 0.002416 0.002366

100 0.002914 0.002443 0.002374

TABLE A.6: Xa and Xb values for Water

Re Xa for Water Xb for Water

20 0.021194 0.021188
30 0.030850 0.030819
40 0.040840 0.040722
50 0.050971 0.050666
60 0.061350 0.060515
70 0.090249 0.036788
80 0.100878 0.036659
90 0.109681 0.037180

100 0.117082 0.037926

TABLE A.7: Xa and Xb values for Kao 15, Kao 20, and Kao 28.5

Re Xa Kao 15 Xb Kao 15 Xa Kao 20 Xb Kao 20 Xa Kao 28.5 Xb Kao 28.5

40 0.0023278 0.0023276 0.0023371 0.0023366 0.0023447 0.0023441
70 0.0025412 0.0025411 0.0023711 0.0023709 0.0023544 0.0023541

100 0.0029149 0.0029149 0.0024434 0.0024433 0.0023750 0.0023748
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A.1 Python Code

Below is the Python code used for calculations:

rho = #Insert Density

v = [

#Insert list of velocity

]

diameter = #Insert hydraulic diameter

mu = #Insert Viscosity

tau = #Insert Yield Strength

for velocity in v:

#Calculating Reynolds number

Re = rho * velocity * diameter / mu

#Calculating Hedstrom number

He = rho * (diameter**2) * tau / (mu**2)

#Init. Darcy friction factor

f_L0 = 64 / Re

#Init. residual

residual = 1

#Iteration process

while residual >= 0.0001:

f_L = 64 / Re * (1 + He / (6 * Re) - 64 / 3 * ((He**4) / ((f_L0

**3) * (Re**7))))

residual = abs(f_L - f_L0)

f_L0 = f_L

#Print result

print(f_L)
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