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• A novel self-tuning fuzzy PID-NFTSM (STFPID-NFTSM) and time delay estimation (TDE) is developed.
• The proposed controller possesses faster transient response, lower steady state error, guarantees a finite time convergence.
• The stability of the closed-loop hybrid system is demonstrated based on Lyapunov function.
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a b s t r a c t

In this work, a new robust controller is developed for robot manipulator based on an integrating
between a novel self-tuning fuzzy proportional–integral–derivative (PID)-nonsingular fast terminal
sliding mode control (STF-PID-NFTSM) and a time delay estimation (TDE). A sliding surface based
on the PID-NFTSM is designed for robot manipulators to get multiple excited features such as faster
transient response with finite time convergence, lower error at steady-state and chattering elimination.
However, the system characteristics are hugely affected by the selection of the PID gains of the
controller. In addition, the design of the controller requires an exact dynamics model of the robot
manipulators. In order to obtain effective gains for the PID sliding surface, a fuzzy logic system is
employed and in order to get an estimation of the unknown dynamics model, a TDE algorithm is
developed. The innovative features of the proposed approach, i.e., STF-PID-NFTSM, is verified when
comparing with other up-to-date advanced control techniques on a PUMA560 robot.

© 2019 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

For enhancing the reliability of the uses of robot manipula-
tors in practical applications, fault monitoring and fault tolerant
control (FTC) have been extensively studied in the last decade [1,
2]. The goal of the fault monitoring scheme is to monitor if a
fault occurs, while the FTC is developed to handle unexpected
behaviors of the system due to the effects of faults. Generally,
the approaches for FTC can be executed by using either passive
FTC (PFTC) or active FTC (AFTC) [3]. Compared to the AFTC, the
PFTC compensates faults’ effects quicker since it does not require
feedback from the fault diagnosis observer, which is required in
the design of the AFTC [4]. However, since there is no online
information feedback, the PFTC needs to depress the highest
faults’ effects in the system, and therefore, a high robustness
controller is required for this control scheme. Hence, many efforts
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have been spent to develop high robustness PFTC systems in
the literature [5,6]. Sliding mode control (SMC) has shown to
supply exceptional robustness property to tackle the matched
uncertainties in the system [7]. The great features of the SMC
have been considerably utilized for robust FTC [8,9]. Generally,
the conventional SMC uses a linear sliding manifold, a discon-
tinuous sign function and an assumed upper bounded value of
the uncertainties in its design. However, this design principle
leads to several limitations for the control system, including: (1)
it cannot supply a defined finite time convergence; (2) it has
slow response when facing with fast variants of faults; (3) it
provides big oscillation(chattering) because of the discontinuous
term; and, (4) it is challenging to get the upper bound value of
the unknown nonlinear function in the system (it requires a lot of
experiments). From the practical point of view, these drawbacks
would reduce the performance of the FTC system significantly.

In order to gain the merits of the SMC and discard the draw-
backs, many advance techniques have been investigated, such as:
(1) non-singular fast terminal sliding mode control (NFTSMC) to
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get faster finite time stability [10,11]; (2) integral SMC to obtain
faster response to the effects of the faults [12]; and (3) high-order
SMC (HOSMC) to cope with the chattering phenomenon [13,14].
Even though the first three drawbacks of the conventional SMC
has been well studied and addressed separately by an effec-
tive approach mentioned above, in many practical applications,
the system must obtain all three properties (i.e., fast transient
response against the effects of fault, stability and convergence
in a finite time and free-chattering) simultaneously. To achieve
this feature, a backstepping NFTSMC has been developed in [15].
However, this approach does not preserve the full merits of the
PID controller, which could dominate the robustness and fast
convergence of the system. To integrate the full features of the
PID controller into the system, new PID-NFTSMC has been initially
studied in previous work [16]. The analyzed results shown that
the developed controller provided very quick response against
the effects of faults and obtained a finite time convergence. How-
ever, the approach in [16] has two major drawbacks. First, the
system characteristics strongly rely upon the selection of the PID’s
parameters (i.e., the proportional, the integral and the derivative
gains parameters). And second, the partial component of the
system’s dynamics model needs to be known in advance.

One way to overcome the needs of prior knowledge of the
dynamics model in the design, which is considered as one of the
major drawbacks of the SMC, is to use adaptive techniques [17,
18]. However, these approaches provide slow convergence speed
when the unknown function is large. In addition, for the large
bound value of the unknown function, the adaptive sliding pa-
rameter needs to adapt to a huge value, which, unfortunately,
generates higher chattering in the system. Therefore, to reduce
the chattering, the sliding gain needs to be reduced. To obtain this
requirement, learning methods using neural network (NN) [19,
20] or fuzzy logic [21,22] has been developed for approximating
the uncertain nonlinear function. After obtaining the accurate
model based on the learning methods, the sliding gain only needs
to estimate the approximation error, which is usually small, and
consequently, the chattering is significantly reduced. However,
the use of learning techniques result in complicated designs of
learning laws and require high computational burden due to the
weight’s learning process. In order to get simpler designs and
lower computational burden, an alternative time delay estimation
(TDE) technique has been developed [23,24].

In this work, a new hybrid control method, which combines
the PID-NFTSM control, a TDE and a self-tuning fuzzy mecha-
nism, is proposed to compensate the aforementioned limitations
of the previous work in [16] for PFTC of robot manipulators.
At the beginning, the proposed control method reconstructs a
PID-NFTSM sliding surface taken from [16] for the robot ma-
nipulators. Although the integration of the PID and the NFTSM
sliding surfaces has several advantages, it possesses a severe
drawback: the performance of the system is strongly dependent
on numerous major parameters. Tuning these parameters such
that the system can obtain the best performance is usually a
difficult task in research and development. In the literature, a
self-tuning mechanism based on fuzzy logic system has shown
to provide effective parameters for the system [25–27]. Hence,
in order to effectively tune the parameters of the controllers, a
fuzzy logic system is designed. Then, a TDE method is explored for
removing the required prior knowledge of the dynamics model
during constructing the proposed controller.

In summary, in comparison to other up-to-date innovation
techniques, the merits of the proposed PFTC method can be
pointed out as follows:

• Compared to the conventional NFTSMC [10,11], the inte-
gral SMC [12] and the HOSMC [13], the proposed method,

i.e., STF-PID-NFTSMC, preserves the merits of all these con-
trollers simultaneously. Hence, the proposed method pro-
vides fast finite time convergence, high robustness against
faults’ effects, and chattering elimination in the system.

• Compared to the previous works based on backstepping
NFTMC (BNFTSMC) [15] and PID-NFTSMC [16], the contri-
butions and merits of the proposed method are pointed
out as follows. In the work [15], an integral nonsingular
fast terminal sliding (INFTSM) surface is proposed (Eq. (7)
in [15]). Then, the first and second derivatives of the sliding
surface are computed (Eqs. (9) and (10) in [15]). Combin-
ing the proposed sliding surface and its first and second
derivative, a third-order state-space model is obtained (Eq.
(11) in [15]). Finally, a backstepping control is designed
to stabilize the third-order state-space system. It can be
observed that the design in [15] contains an integral com-
ponent (Eq. (7) in [15]), a proportional component (Eq.
(9) in [15]) and a derivative component (Eq. (10) in [15]).
Therefore, it can be roughly considered as a proportional–
integral–derivative (PID)-nonsingular fast terminal sliding
mode (PID-NFTSM) controller (or we can call PID-NFTSM-
like controller) with the gains Kp = 1, Ki = 1, and Kd =

1. Obviously, this approach does not preserve the full fea-
tures of the PID controller. In the work [16], a proportional
integral derivative-nonsingular fast terminal sliding mode
(PID-NFTSM) surface is proposed. This approach can pre-
serve the merits of both the PID and NFTSM controllers (the
gains, i.e., Kp, Ki and Kd, are selected based on experiences).
Thus, this approach generally provides better performance
than the approach in [15] in terms of quick response and
fast finite time convergence. However, it preserves two ma-
jor drawbacks mentioned above (the system characteristics
strongly rely upon the selection of the PID’s parameters
and the partial component of the system’s dynamics model
needs to be known in advance). In the proposed method
in this paper, i.e., STF-PID-NFTSMC, effective parameters of
the controller are obtained based on a fuzzy logic system so
that the performance of the system is improved. Although
the learning method based on fuzzy approximation has been
developed to approximate the model uncertainty and faults
in [16], its computational load is high as discussed above.
Hence, in this work, the developed TDE helps to remove the
awareness of the robot’s dynamics model and significantly
reduce the computational load of the system since the com-
putational burden of the TDE is much lower compared to
the use of fuzzy approximation technique in [16].

• The complexity and stability issues of the hybrid system
have been solved properly.

• A comprehensive comparison with the existing PFTC meth-
ods such as the computed torque control (CTC), the PID,
the PID-SMC, the NFTSMC and the PID-NFTSMC has been
implemented to show the superior of the proposed strategy.

The next sections are constructed as follows. Section 2 states
the problem. Section 3 presents the design of robust fault toler-
ant control using the PID-NFTSMC controller and the time-delay
estimation. The design of the self-tuning fuzzy PID-NFTSMC and
the time-delay estimation is introduced in Section 4. Discussions
on the simulation results for the performance of the proposed
strategy are presented in Section 5. Conclusions are provided in
Section 6.

2. Problem statement

A typical dynamics model of an n-DOF (degree-of-freedom)
robot manipulator is described as follows [11]:

q̈ = M−1(q) (τ − Ξ (q, q̇) − Π (q̇, τd)) + η(t − Tf )φ(q, q̇, τ ) (1)
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where q ∈ ℜ
n, q̇ ∈ ℜ

n, q̈ ∈ ℜ
n are the angle, the angular

velocity, and the angular acceleration of the joints, respectively.
M(q) ∈ ℜ

nxn represents the inertia matrix. τ ∈ ℜ
n is the control

input torque. Ξ (q, q̇) = C(q, q̇)q̇ + G(q), in which C(q, q̇) ∈

ℜ
n, G(q) ∈ ℜ

n represents the Coriolis/ Centripetal forces and
the gravity force, respectively. Π (q̇, τd) = F (q̇) + τd, in which
F (q̇) ∈ ℜ

n is the friction matrix and τd is the disturbance torque.
The term φ(q, q̇, τ ) ∈ ℜ

n is a vector representing the faults. In
this paper, we consider the effects of the component faults and
actuator faults since they usually occur in the robot system. Both
can be represented by the term φ(q, q̇, τ ). Finally, η(t − Tf ) ∈

ℜ
n represents the variant of the fault function with respect to

time, where Tf indicates the moment that the faults occur. These
functions are defined in the same way as in [11].

The inertia matrix M(q) is assumed to satisfy the following
condition:

0 < λmin{M(q)} ≤ ∥M∥ ≤ λmax{M(q)} ≤ d, d > 0 (2)

where λmax {M} and λmin {M} denotes the biggest and smallest
eigenvalues of matrix M , respectively.

Eq. (1) can be rewritten as follows:

q̈ = M−1(q)τ +M−1(q) (−Ξ (q, q̇) − Π (q̇, τd))+η(t−Tf )φ(q, q̇, τ ).

(3)

Let x1 = q, x2 = q̇ and u = τ , Eq. (3) can be represented by a
form of state space model [11]:

ẋ1 = x2
ẋ2 = M−1(x1)u + f (x1, x2) + ∆(x1, x2, u, τd)
y = x1

(4)

where f (x1, x2) = M−1(q) (−Ξ (q, q̇)) is a sum of known functions
and ∆(x1, x2, u, τd) = M−1(q) (−Π (q̇, τd)) + γ (t − Tf )φ(q, q̇, τ )
represents the lumped unknown function. When the system
works in normal condition, the component ∆(x1, x2, u, τd) rep-
resents the effects of the uncertainties and disturbance, whereas
when the faults occur, the term ∆(x1, x2, u, τd) will cover all the
effects of the uncertainties, disturbances and faults.

Assumption 1. The uncertainty model is bounded by:

|∆(x1, x2, u, τd)| ≤ ∆0 (5)

Assumption 2. The derivative of the uncertainty model is
bounded by:

|∆̇(x1, x2, u, τd)| ≤ ∆1 (6)

where ∆0 and ∆1 are constants.

The above assumptions are quite general in the literature [4,6],
that is, the FTC is applied for ‘‘not exploding systems’’. This
leads to practical satisfaction of the Lipschitz condition in the
considered operation region [4].

3. Robust fault tolerant control using PID-NFTSMC and time
delay estimation

3.1. Robust PID-NFTSMC fault tolerant control

The selection of the sliding surface when designing SMC sig-
nificantly impacts on the system’s tracking outcomes. The sliding
surface is selected in such a way that if it converges to the
origin, then the system can obtain the expected outcomes. Let
e = x1 − xd, ė = x2 − ẋd be the trajectory tracking errors,
where xd and ẋd denote a desired trajectory and a derivative of
the desired trajectory, respectively. In order to achieve fast finite

time convergence and eliminate the singular problem, a NFTSM
sliding surface is configured as [10,11]:

s = e + k1e[λ]
+ k2ė[p/q] (7)

where k1 = diag (k11, k12, . . . , k1n) ∈ ℜ
n×n and k2 =

diag (k21, k22, . . . , k2n) ∈ ℜ
n×n are two positive definite matrices,

the two positive odd numbers p and q are selected to satisfy the
conditions 1 < p/q < 2 and λ > p/q.

Then, based on the sliding surface s, a sliding surface based on
PID-NFTSM is proposed as [16]:

sPID(t) = Kps(t) + Ki

∫ t

0
s(t)dt + Kd

ds(t)
dt

(8)

where Kp, Ki and Kd are the proportional, the integral and the
derivative gains, respectively. Obviously, the system response de-
pends very much on the selection of these parameters. Therefore,
these parameters need to be effectively tuned.

The derivative of the sliding surface s is derived as:

ds(t)
dt

= ė + k1λ|e|λ−1
· ė + k2

p
q
|ė|

(p/q)−1
· ë

= ė + k1λ|e|λ−1
· ė + k2

p
q
|ė|

(p/q)−1
· (ẋ2 − ẍd)

(9)

Inserting Eq. (4) into (9), we have

ds(t)
dt

= ė + k1λ|e|λ−1
· ė + k2

p
q
|ė|

(p/q)−1

·
(
M−1(x1)u + f (x1, x2) + ∆(x1, x2, u, τd) − ẍd

)
(10)

From Eqs. (8) and (10) it can be observed that the gain Kd is
proportional to the control input u. Therefore, the variation of this
parameter has a significant effect on the stability of the whole
system. For simplicity in guaranteeing the stability of the system,
we choose Kd = 1. Then, from results in Eq. (10), Eq. (8) can be
rewritten as:

sPID = Kps + Ki

∫ t

0
sdt + ė + k1λ|e|λ−1

· ė

+ k2
p
q
|ė|

(p/q)−1
·
(
M−1(x1)u + f (x1, x2)

+∆(x1, x2, u, τd) − ẍd
)

= Kps + Ki

∫ t

0
sdt + ė + k1λ|e|λ−1

· ė

+ k2
p
q
|ė|

(p/q)−1
· (f (x1, x2) − ẍd)

+ k2
p
q
|ė|

(p/q)−1
M−1(x1)u + k2

p
q
|ė|

(p/q)−1
· ∆(x1, x2, u, τd)

(11)

Let Γ (x1, x2, xd, ẋd, ẍd) = Kps + Ki
∫ t
0 s(t)dt + ė + k1λ|e|λ−1

·

ė + k2 p
q |ė|

(p/q)−1
· (f (x1, x2) − ẍd) be the lumped known function,

Λ (ė, ∆) = k2 p
q |ė|

(p/q)−1
· ∆(x1, x2, u, τd) be the lumped unknown

function and Ω(ė, x1) = k2 p
q |ė|

(p/q)−1
·M−1(x1). Then, Eq. (11) can

be simplified as follows:

sPID = Γ (x1, x2, xd, ẋd, ẍd) + Ω(ė, x1)u + Λ (ė, ∆) (12)

The proposed sliding mode controller is developed as follows:

uPID = −Ω+(ė, x1)
(
ueq + ur

)
(13)

where Ω+(ė, x1) denotes the pseudoinverse of Ω(ė, x1), i.e.,
Ω+(ė, x1) =

(
ΩT (ė, x1)Ω(ė, x1)

)−1
ΩT (ė, x1), ΩT (ė, x1) denotes
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the transpose of the matrix Ω(ė, x1), and the equivalent control
is designed as follows:

ueq = Γ (x1, x2, xd, ẋd, ẍd) (14)

and the switching term is made of:

u̇r = (Υ + a)sign(sPID) (15)

where the constant Υ is chosen such that δΛ =
d(Λ(ė,∆))

dt and
|δΛ| ≤ Υ , and a is a small positive constant.

Theorem 1. Consider the system model described in Eq. (4) and
the proposed sliding surface in Eqs. (7) and (8), if the composite
controller in Eqs. (13), (14) and (15) are employed as the control
input to the system, then sliding surface is stable and convergent to
zero.

Proof. Inserting Eqs. (13)–(15) into Eq. (12), we have

sPID = −ur + Λ (ė, ∆) (16)

Differentiating the sliding variable in Eq. (16) with respect to
time, we have

ṡPID = −u̇r + δΛ (17)

Consider the following Lyapunov function candidate

V =
1
2
sTPIDsPID (18)

Differentiating Eq. (18) and combining the results with Eqs.
(16) and (17), one obtains

V̇ = sTPIDṡPID
= sTPID (−u̇r + δΛ)

= sTPID (−(Υ + a)sign(sPID) + δΛ)

= −Υ |sPID| + δΛsPID − a |sPID| ≤ −a |sPID|

(19)

As a result, the sliding surface (8) is stable and convergent
according to the Lyapunov criterion. This proof is completed.

Remark 1. Compared to the conventional NFTSMC [10,11] and
other existing conventional sliding mode surfaces [8,9], the pro-
posed PID sliding surface in Eq. (8) possesses three major terms
as analyzed in our previous work [16]. First, the presence of
the component Kps(t) helps to maintain the properties of the
conventional NFTSMC. Second, the presence of the component
Ki

∫ t
0 sdt helps to get high robustness property like a manner to

the integral SMC. Third, the presence of the component Kd
ds(t)
dt

helps to get the chattering elimination similar to the HOSMC.
Therefore, theoretically, the proposed sliding surface inherits the
major benefits of the NFTSMC, the integral SMC and the HOSMC
simultaneously.

3.2. Adaptive PID-NFTSMC and TDE for robust fault tolerant control

In the developed control law in Eq. (13), the chattering is
massively reduced because the discontinuous function is under
integral, but it cannot be eliminated entirely by this method. In
addition, the sliding gain of the controller is chosen by utilizing
the prior knowledge of |δΛ|. However, this assumption prevents
the applicability of the proposed algorithm because it is difficult
to satisfy the assumption in real applications. To reduce the
chattering and remove the assumption, a time delay estimation
technique and an adaptive law are developed in this subsection.

From Eq. (12), the unknown component, i.e., Λ (ė, ∆), at the
time t can be determined as:

Λ(ė, ∆)(t) = sPID(t) − Γ (x1, x2, xd, ẋd, ẍd)(t) − Ω(ė, x1)(t)u(t) (20)

However, since the control input u at the time t is not avail-
able, Eq. (20) is not calculable. To get an estimation, TDE is
employed. The underlying principle of the TDE is to approximate
the unknown component at the time t using its previous value
at the time delay (t − L) subject to the sufficiently small value
of the time delay L. Actually, when the Assumptions 1 and 2 are
satisfied and the time delay L is sufficiently small, the following
result holds [11]:

Λ(ė, ∆)(t)
∼= Λ(ė, ∆)(t−L) (21)

Therefore, the unknown function can be approximated by:

Λ̂(ė, ∆)(t) ≜ Λ(ė, ∆)(t−L) (22)

where Λ̂(ė, ∆)(t) is the estimation of the unknown function
Λ(ė, ∆)(t) at time t .

From Eqs. (12) and (22), we have:

Λ̂(ė, ∆)(t) ≜ Λ(ė, ∆)(t−L)

= sPID(t−L) − Γ (x1, x2, xd, ẋd, ẍd)(t−L)

− Ω(ė, x1)(t−L)u(t−L)

= uTDE(t)

(23)

Then, the unknown function can be expressed by:

Λ (ė, ∆) = uTDE + ε (24)

where ε denotes the error due to TDE approximation. The follow-
ing assumption is considered:

Assumption 3. the derivative of the approximation error ε is
bounded by:

δε =

⏐⏐⏐⏐dε(t)dt

⏐⏐⏐⏐ ≤ κ (25)

where κ is an unknown constant.

When the sample time of the system, i.e., L, is small, the
approximation error ε and its derivative expressed in Eq. (25) will
be bounded due to the estimation capability of the TDE. There-
fore, Assumption 3 can be satisfied in the practical applications.

The proposed controller is now designed as follows:

uPID = −Ω+(ė, x1)
(
ueq + uTDE + uar

)
(26)

where ueq and uTDE are introduced in Eqs. (14) and (23), respec-
tively.

The adaptive law is designed as follows:

u̇ar = (κ̂ + a)sign(sPID) (27)

where κ̂ is the estimation of the bounded value κ . It is updated
by the following law:

˙̂κ =
1
c

|sPID | (28)

where c is the adaptation gain.

Theorem 2. Consider the dynamics model of the system described
in Eq. (4) and the proposed sliding surface in Eqs. (7) and (8), if the
TDE in Eq. (23) is employed to approximate the unknown dynamics
model and the controllers defined in Eqs. (26)–(28) are employed as
the control input to the system, then the stability and convergence
of the system are guaranteed.

Proof. Inserting the proposed control law defined in Eqs. (26)–
(28) into Eq. (12), we have:

sPID = −uar + ε (29)
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Differentiating the sliding variable in Eq. (29) with respect to time
and using Eq. (25), we have:

ṡPID = −u̇ar + δε (30)

Let κ̃ = κ − κ̂ be the adaptation error. Consider the following
Lyapunov function candidate

V =
1
2
sTPIDsPID +

1
2
cκ̃T κ̃ (31)

Differentiating Eq. (31) and combining the results with Eqs.
(28) and (30), one obtains

V̇ = sTPIDṡPID + c(κ̂ − κ) ˙̂κ

= sTPID (−u̇r + δε) + c(κ̂ − κ) ˙̂κ

= sTPID
(
−(κ̂ + a)sign(sPID) + δε

)
+ (κ̂ − κ) |sPID |

= −κ |sPID| + δεsPID − a |sPID| ≤ −a |sPID|

(32)

As a result, the output of Theorem 2 is guaranteed according to
the Lyapunov criterion and this completes our proof.

Remark 2. Due to the effects of disturbance, the sliding surface
sPID cannot maintain sPID = 0 in infinite time. Therefore, the
adaptation gain κ in Eq. (28) keeps increasing continuously. This
symptom is known as the ‘‘parameter drift problem’’. In order
to eliminate this problem, the following adaptive law can be
employed:

˙̂κ =

⎧⎨⎩0, if |sPID| < ρ
1
c

|sPID | , if |sPID| ≥ ρ
(33)

where ρ is a small positive constant.

Remark 3. The selected sliding surface in Eq. (7) and the pro-
posed controllers in Eqs. (26)–(28) requires the full measurement
of the states. However, in some practical robot models, only
the position is measurable. Therefore, to estimate the velocity
and acceleration of the system, the following second-order exact
differentiator (SOED) proposed in [14] is employed:

ż0 = υ0

υ0 = −m1|z0 − x1|2/3sign(z0 − x1) + z1
ż1 = υ1

υ1 = −m2|z1 − υ0|
1/2sign(z1 − υ0) + z2

ż2 = −m3sign(z2 − υ1).

(34)

where mi(i = 1, 2, 3) are the gains that need to be effectively
selected.

After converging, the SOED can provide

z0 = x̂1, z1 = x̂2, z2 = ˙̂x2 (35)

In this sense, the measurement of x2 and ẋ2 in the proposed
sliding surface in Eq. (7) and the controllers in Eqs. (26)–(28)
can be replaced by the estimations z1 and z2, respectively. For
example, the derivative of the tracking error can be re-defined as
ė = z1 − ẋd, etc.

Remark 4. The SOED in Eq. (34) provides the accurate states
estimation regardless of what the control input is. It means that
the states estimation based on SOED and the controller can be
independently constructed. Therefore, the closed-loop observer-
controller can obtain the full merit features like the controller
with full state measurement.

Remark 5. The major drawback of the learning technique is that
the computational burden is high due to the weights learning

process [19–22]. This paper employed the TDE method to signif-
icantly reduce the computational burden of the system as it is
simple in computing.

4. Design of self-tuning Fuzzy-PID-NFTSMC for robust fault
tolerant control using time delay estimation

In the proposed controller, it is important to select the effec-
tive values for the gains Kp and Ki so that the system satisfies the
desired performance, i.e., fast convergence, small oscillatory and
less overshoot. In this work, these parameters are automatically
tuned by a fuzzy logic system. Through fuzzy knowledge, the
tuners can be established as follows:

Ka(t) = Ka0 + β∆Ka(t), (36)

where a is p or i, Ka0 is the constant learning rate, ∆Ka(t) is
the tuning parameter, which is achieved based on a fuzzy logic
system and β is a constant coefficient. A common structure of
fuzzy logic includes four parameters: fuzzifier, knowledge base,
inference engine, and defuzzifier.

Let x = [x1, x2, . . . , xn]T ∈ ℜ
n be the input and y ∈ ℜ be the

output of the fuzzy system, a set of conditional ‘‘IF-THEN’’ rules
is created to establish the fuzzy rule base, as follows:

Rule l : If x1 is Al
1 and x2 is Al

2 and . . . and xn is Al
n then y is Bl,

(37)

where Al
k and Bl denotes the linguistic variables of the input and

output of the fuzzy set, respectively. The symbol k = 1, . . ., n
indicates the number of inputs, whereas the symbol l = 1, . . . ,m
indicates the number of fuzzy IF-THEN rules.

In this work, two inputs: absolute error, i.e, |e(k)|, and absolute
derivative of error, i.e., |de(k)|, are used as inputs of the fuzzy logic
system. Each input is defined by:

{Z, VS, S, M, B} (38)

where Z = Zero, VS = Very Small, S = Small, M = Medium, and B
= Big, as shown in Fig. 1.

The fuzzy output is calculated as:

u(k) =

∑m
j=1 hjuj∑m
j=1 hj

(39)

where hj = µj (|e(k)|)∧µj (|de(k)|), µj (|e(k)|) and µj (|de(k)|) are
the membership functions (MFs) of the fuzzy subsets |e(k)| and
|de(k)|. The operator ∧ denotes the minimum. There are several
MFs that can be used for the controller, however triangular MFs
have been selected in this paper due to their simplicity and
straightforward implementation. The MFs for |e(k)| and |de(k)|
can be formed with five triangular functions with equal base and
50% overlap with neighboring MFs. Fig. 1a shows MFs outlined
on the commonly normalized area between 0 and 1. The MFs for
the control output, ∆Ka(a = p, i), is defined on [0, 4], as shown
in Fig. 1b.

Generally, there is no definite technique for defining the rules
for the fuzzy logic system. In fact, the set of rules are commonly
established based on the knowledge about the operation princi-
ples of the control system. By analyzing the dynamics behavior
and the output error, the tuning rules for ∆Ka(a = p, i) in this
work are designed as in Table 1. The following three factors are
used to establish the fuzzy rules:

1. When the error |e(k)| and the derivative of error |de(k)| are
small, the output ∆Kp should be small while the output ∆Ki
should be large to maintain the small tracking error.
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Fig. 1. Membership functions of fuzzy inputs and output of the fuzzy PI-D
sliding surface.

Fig. 2. Self-tuning fuzzy PI-D sliding surface architecture.

2. When the error |e(k)| is large, the output ∆Kp should be
large to force the system to converge to zero faster. Mean-
while, the output ∆Ki should be small to avoid large oscil-
lation and overshoot.

3. Other rules are configured based on the behavior observa-
tions of the system through the simulations. For example,
when |e(k)| is M and |de(k)| is S, we can set the rule for
∆Ki first, and then adjust the rule for ∆Kp. Then, observe
and compare the dynamic behavior of the system for each
selected rule of ∆Kp. The best behavior of the system is
selected as the final rule, i.e., rule M in Table 1. After
obtaining the rule for ∆Kp, we adjust the rule ∆Ki such that
the best system behavior can be achieved, i.e., the rule VS is
obtained. Finally, the rule (M,VS) is established when |e(k)|

is M and |de(k)| is S. Similar procedure can be performed
for selecting other fuzzy rules.

The structure of the tuning mechanism for Kp and Ki is illus-
trated in Fig. 2. The architecture of the proposed controller is
interpreted in Fig. 3.

Remark 6. The design of the self-tuning fuzzy logic for PID/PI
controllers is quite standard in the literature. The importance and
novelty of the design of fuzzy logic for such applications is to
construct the effective fuzzy rules. This paper employs this well-
known technique to select the effective proportional and integral
gains of the PID sliding surface.

Remark 7. The system stability under the use of the controller
defined in Eq. (26) has been proved in Eq. (32). At the same time,
the employment of the fuzzy logic to tune the PID gains does not
affect the system’s stability. Therefore, the system’s stability can
be guaranteed thoroughly.

5. Results and discussions

In this section, the effectiveness of the developed control
strategy is verified. Without loss of generality, the PUMA560
robot [28] is used as a benchmark for testing. For the sake of
results’ evaluation, only the first three joints of the robot are
considered. For the configuration of the PUMA560 robot and its
kinematic and dynamics model, the reader can refer to [28]. In
the practical engineering application, the exact information of the
dynamics model of the robot is difficult to obtain. Therefore, we
assume that the following friction and disturbance components
existed in the robot dynamics:

F (q) + τd =

[ 1.5q̇1 + 0.5 sin(3q1) + 1.2sin(q̇1)
2.3q̇2 − 1.2 sin(2q2) + 0.95sin(q̇2)

−2.1q̇3 − 1.6 sin(3q3) + 0.75sin(q̇3)

]
(40)

The robot is assumed to follow the following trajectory:

xd =

[
cos(t/5π ) − 1, cos(t/5π +

π

2
), sin(t/5π +

π

2
) − 1

]T

(41)

The proposed controller, i.e., STF-PID-NFTSMC, is compared with
up-to-date innovative PFTC techniques such as the computed
torque control (CTC), the proportional-derivative-integral (PID),
the NFTSMC [10,11], the PID-SMC [12] and the PID-NFTSMC [16].
The parameters used in this simulation of the controllers are se-
lected as in Table 2. To verify the performance of the controllers,
we consider their performances on the robot when it works in
two circumstances: normal and fault operations.

Fig. 3. Sketch of the proposed controller, i.e., STF-PID-NFTSMC and TDE.
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Fig. 4. Tracking errors of joints when the system in normal operation.

5.1. Comparisons when robot works in normal operation

The tracking errors of the controller in normal operation are
shown in Fig. 4. It can be observed from Figs. 4a and 4b that the
PID and the CTC provide good tracking response (fast convergence
and less oscillatory) when the system is being affected by small
effects of model uncertainties. However, for the system contain-
ing large uncertainties, the PID and the CTC provide unsatisfied
performance, as shown in Fig. 4c. On the other hand, using sliding
mode control techniques, i.e., the PID-SMC, the NFTSMC, the PID-
NFTSMC and the STF-PID-NFTSMC, the system provides better

Fig. 5. Tracking errors of joints when the system in fault operation.

tracking performance against the effects of both small and large
uncertainties than that of the CTC and the PID controllers, as
shown in Fig. 4. Interestingly, when the details of Fig. 4 are
zoomed out, it can be observed that the steady-state error (SSE)
of the PID-SMC, the PID-NFTSMC and the STF-PID-NFTSMC are
much smaller than that of the NFTSMC. These results proved
that the integration of the PID sliding surface into the SMC has
reduced the SSE of the system significantly. In addition, one
more interesting point that can be obtained from Fig. 4 is that
the responses of the PID-SMC and the PID-NFTSMC are quite
similar when the parameters of the PID sliding surface of these
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controllers have the same value. This means that the selection of
the PID gains are major and the responses of the controllers are
strongly dependent on the selection of the gain values. Therefore,
these parameters should be optimized. Using the fuzzy logic to
automatically select the PID gains, the performance of the system
is better, i.e., the performance of the STF-PID-NFTSMC is better
than that of the PID-NFTSMC.

5.2. Comparisons when robot works in fault operation

In this work, the following fault function is generated into the
system:

φ(q, q̇, τ )

=

[
(30 sin(q1q2) + 4 cos(q̇1q2) + 15cos(q̇1q̇2) ) t ≥ 10

−0.8u2, t ≥ 20
0

]
(42)

It means that the fault 30 sin(q1q2)+4 cos(q̇1q2)+15cos(q̇1q̇2)
is assumed to occur in the first actuator from time t = 10 s
and another fault −0.8u2 is existed in the second actuator from
the time t = 20 s. The tracking errors of the controllers when
the faults occur are presented in Fig. 5. For the convenience
of comparisons, the root-mean-square-error (RMSE) and conver-
gence time (CT) of the controllers are also shown in Table 3.
From Fig. 5 and Table 3, it can be observed that the controllers
such as the CTC, the PID, and the NFTSMC provide worse tracking
performance when the faults occur; the system becomes unstable
and tends to be out of control. In particular, in Figs. 5a and
5b, the controllers PID, CTC and NFTSMC provide unexpected
motion of the robot from the beginning of the faults at time
t = 10 s and time t = 20 s. The integration of the PID into the
SMC has increased the robustness of the system significantly: the
controllers PID-SMC, PID-NFTSMC and STF-PID-NFTSMC suppress
the effects of the faults very quick, as shown in Fig. 5.

In addition, the comparisons between the PID-NFTSMC and
the STF-PID-NFTSMC show that the self-tuning fuzzy mecha-
nism helps to enhance the system performance, i.e., the STF-
PID-NFTSMC provides less overshoot, faster transient response
and faster convergence than that of the PID-NFTSMC. This is
clearly demonstrated from the tracking error and convergent time
reported in Table 3. The fuzzy tuning parameters are shown in
Fig. 6. The results are matched with the analysis in Section 4 and
can be explained as follows. From the initial position and when
the faults occur at time t = 10 s and time t = 20 s, the tracking
errors and the derivatives of the tracking errors are large, the
gain Kp is large and the gain Ki is small to force the system to
converge faster and simultaneously avoid large oscillatory. When
the system converges, i.e., the error and its derivative are small,
the gain Kp is small and the gain Ki is larger to maintain the small
tracking error. The control efforts of the developed controller,
i.e., STF-PID-NFTSMC, are reported in Fig. 7. It can be observed
from Fig. 7 that the chattering is significantly reduced by using
the developed control strategy.

Remark 8. The control efforts of other controllers, i.e., the CTC,
the PID, the NFTSMC and the PID-based SMC, are not presented in
this paper to shorten the length of the paper. However, since the
proposed method, i.e., STF-PID-NFTSMC, provides higher tracking
performance than other controllers, as discussed previously, and
also provides continuous control inputs, we can conclude that: in
this simulation analysis, with the selected parameters in Table 1,
the proposed method surpasses other controllers with regard to
transient response, tracking precision and chattering elimination.

Fig. 6. Online tuning gains, Kp, Ki , using self-tuning fuzzy logic when the system
in fault operation.

Fig. 7. Control input of the proposed controller, i.e, STF-PID-NFTSMC.

Table 1
Constructed fuzzy tuning rule.
∆kp, ∆ki |de(k)|

Z VS S M B

|e(k)|

Z VS, B VS, B Z, B Z, B Z, B
VS VS, B VS, B VS, B Z, M Z, M
S S, M S, M S, M VS, S VS, S
M M, Z M, Z M, VS S, VS S,VS
B B, Z B, Z B, Z B, Z M, Z

Table 2
Parameter settings of the investigated controllers.
Controller Parameters Value

CTC Kp, Kd 200,10
PID Kp, Ki, Kd 200, 100, 10
PID-SMC Kp, Ki, Kd 200, 100, 10

∆̄, ζ , ν 20, 1, 0.1
NFTSMC k1, k2, λ, p, q 10, 5, 1.4, 9, 7

∆̄, ζ , ν 20, 1, 0.1
PID-NFTSMC k1, k2, λ, p, q 10, 5, 1.4, 9, 7

m1,m2,m3 10, 10, 10
c, a 0.5, 0.1

STF-PID-NFTSMC PID-NFTSM term Same values as the PID-NFTSMC
The fuzzy rules As in Table 1 and Fig. 1.
Kp0, Ki0, β 4, 2, 1.5

Remark 9. It must be noted that Assumptions 1 and 2 may not
be satisfied for abrupt faults since the changing rate of the faults
is very high. However, due to the presence of the integral term in
the proposed PID-NFTSM sliding surface in Eq. (10), the system
can compensate the fault very quickly. Therefore, the system will
have a higher probability to avoid ‘‘exploding’’. In fact, this is one
of the major contributions of this work. The reports shown in
Figs. 3 and 4 support our statement.
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Table 3
Tracking errors and Convergence Time (CT) of the system when the faults occur
under the inputs of the controllers.
Controller E1 E2 E3 CT1 CT2 CT3
CTC 0.2363 0.3875 0.0424 3.75 3.85 4.00
PID 0.1270 0.2295 0.0396 6.12 10.50 4.80
PID-SMC 0.0306 0.0190 0.0213 8.21 8.45 11.50
NFTSMC 0.3539 0.1395 0.0116 3.72 3.20 2.10
PID-NFTSMC 0.0195 0.0164 0.0152 7.45 8.05 8.14
STF-PID-NFTSMC 0.087 0.0075 0.0067 3.51 3.52 3.10

6. Conclusions

This paper continues to enhance the performance of the fault
accommodation scheme for robot manipulators found on earlier
results in [16]. First, the PID-NFTSMC is reconstructed and applied
for the dynamics model of robot manipulators. Then, in order
to enhance the performance of the PID-NFTSMC, a self-tuning
fuzzy mechanism and an approximation technique based on TDE
are developed, resulting in a new control method called self-
tuning fuzzy PID-NFTSMC (STF-PID-NFTSMC). Compared to the
conventional PID-NFTSMC, the proposed approach improves the
transient response and provides less overshoot and steady-state
error since the major parameters of the PID gains are selected
effectively based on a fuzzy logic system. In addition, the integra-
tion of the TDE helps to eliminate the prior knowledge require-
ment of the exact system dynamics and reduce the computational
burden as well. The proposed approach is then compared with
the conventional PID-NFTSMC and other up-to-date FTC innova-
tion methodologies. The simulation results verify the outstanding
features of the proposed strategy.

For future work it will be interesting to investigate the effects
of the input saturation, output constraints of the system and the
sensor faults in the design.
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