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Abstract
Distributed computing network-systems are modeled as graphs with vertices representing compute elements and adjacency-
edges capturing their uni- or bi-directional communication. Distributed function computation has a wide spectrum of major 
applications in distributed systems. Distributed computation over a network-system proceeds in a sequence of time-steps in 
which vertices update and/or exchange their values based on the underlying algorithm constrained by the time-(in)variant 
network-topology. For finite convergence of distributed information dissemination and function computation in the model, 
we present a lower bound on the number of time-steps for vertices to receive (initial) vertex-values of all vertices regardless 
of underlying protocol or algorithmics in time-invariant networks via the notion of vertex-eccentricity in a graph-theoretic 
framework. We also address lower bounds on vertex-eccentricity and its maximum version in terms of common graph-
parameters such as maximum degree, and order and size.

Keywords Distributed function computation · Linear iterative schemes · Information dissemination · Finite convergence · 
Vertex-eccentricity

Preliminaries

Distributed computation algorithms, decentralized data-
fusion architectures, and multi-agent systems are modeled 
with a network of interconnected vertices that compute com-
mon value(s) based on initial values or observations at the 
vertices. Key computation and communication requirements 
for these network/system paradigms include that their verti-
ces perform local/internal computations and regularly com-
municate with each other via an underlying protocol. Funda-
mental limitations and capabilities of these algorithms and 
systems are studied in the literature with viable applications 

in computer science, communication, and control and opti-
mization (see, for examples, [1, 4, 5, 11, 12]). We give brief 
and informal descriptions of some example studies below:

1. Quantized consensus [6]: Consider an order-n net-
work with an initial network-state in which each 
vertex assumes an initial (integer) value xi[0] for 
i = 1, 2,… , n . The network achieves a quantized 
consensus when, at some later time, all the n ver-
tices simultaneously arrive with almost equal val-
ues yi for i = 1, 2,… , n (that is, |yi − yj| ≤ 1 for all 
i, j ∈ {1, 2,… , n} ) while preserving the sum of all ini-
tial values (that is, 

∑n

i=1
xi[0] =

∑n

i=1
yi).

2. Collaborative distributed hypothesis testing [7]: Con-
sider a network-system of n vertices (sensors/agents) 
that collaboratively determine the probability measure of 
a random variable based on a number of available obser-
vations/measurements. For the binary setting in decid-
ing two hypotheses, each vertex collects measurement(s) 
and makes a preliminary (local) decision di ∈ {0, 1} in 
favor of the two hypotheses for i = 1, 2,… , n . The n 
vertices are allowed to communicate, and the network-
system resolves with a final decision by, for example, the 
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majority rule (that is, computes the indicator function of 
the event 

∑n

i=1
di >

n

2
 ) in distributed fashion.

3. Solitude verification [4]: Consider an unlabeled net-
work of n vertices (processes) in which each vertex is 
in one of a finite number of states: si for i = 1, 2,… , n . 
Solitude verification on the network checks if a unique 
vertex with a given state s exists in the network, that 
is, computes the Boolean function for the equality 
|{i ∈ {1, 2,… , n} ∣ si = s}| = 1.

4. Fundamental iterative limits of distributed function 
computation [11, 18]: Consider a generic distributed 
information processing system to attain collective goals 
via iterative or non-iterative inter-vertex communication. 
Lower and upper bounds on numbers of iterations for 
achieving finite convergence of distributed information 
dissemination and function computation are studied via: 
structural-controllability and -observability theories [11] 
and information-theoretic techniques [18] in determin-
istic and probabilistic settings that capture initial-value/
input distribution, network-topological and communica-
tion constraints, and/or estimation/output performance.

While there is a wide spectrum of algorithms in the litera-
ture that solve distributed computation problems such as the 
above, there are also studies that deal with algorithmic and 
complexity issues constrained by underlying time-(in)variant 
network-topology, resource-limitations associated with ver-
tices, time/space and communication tradeoffs, convergence 
criteria and requirements, etc. We present below a model of 
distributed computing systems and address the motivation 
of our study.

Model of Distributed Computing Systems

Most graph-theoretic definitions in this article are given in 
[2]. We will abbreviate “directed graph” and “directed path” 
to digraph and dipath, respectively.

We consider the topological model and algorithmics 
detailed in [11] for distributed function computation, and 
provide its abstraction components as follows:

1. Network-topology: A distributed computing system is 
modeled as a digraph G with V(G) and E(G) denoting 
its sets of vertices and directed edges, respectively. Uni-
directional communication on V(G) is captured by the 
adjacency relation represented by E(G): for all distinct 
vertices, u, v ∈ V(G) , (u, v) ∈ E(G) if and only if vertex 
u can send information to vertex v (and v can receive 
information from u). Note that bi-directional communi-
cation between u and v is viewed as the co-existence of 
the two directed edge (u, v) and (v, u) in E(G).

  Distributed computation over the network proceeds in 
a sequence of time-steps. At each time-step, all vertices 

update and/or exchange their values based on the under-
lying algorithm constrained by the network-topology, 
which is assumed to be time-invariant.

2. Resource capabilities in vertices: The digraph G of the 
network-topology is vertex-labeled such that messages 
are identified with senders and receivers. The vertices of 
V(G) are assumed to have sufficient computational capa-
bilities and local storage. Generally, we assume that: 
(1) all communications/transmissions between vertices 
are reliable and in correct sequence, and (2) each ver-
tex may, in the current time-step, receive the prior-step 
transmission(s) from its in-neighbor(s), update, and send 
transmission(s) to its out-neighbor(s) in accordance to 
the underlying algorithm.

  The domain of all initial/input and observed/output 
values of the vertices of G is assumed to be an algebraic 
field � .

3. Linear iterative scheme (for algorithmic lower- and 
upper-bound results): For a vertex v ∈ V(G) , denote by 
xv[k] ∈ �  the vertex-value of v at time-step k = 0, 1,… . 
A function with domain � |V(G)| and codomain �  is 
computed in accordance to a linear iterative scheme. 
Given initial vertex-values xv[0] ∈ �  for all vertices 
v ∈ V(G) as arguments to the function, at each time-step 
k = 0, 1,… , each vertex v ∈ V(G) updates (and trans-
mits) its vertex-value via a weighted linear combination 
of the prior-step vertex-values constrained by neighbor-
structures: for all v ∈ V(G) and k = 0, 1,… , 

where the prescribed weights wvu ∈ �  for all v, u ∈ V(G) 
that are subject to the adjacency-constraints wvu = 0 
(the zero-element of �  ) if u is not adjacent to v (that is, 
(u, v) ∉ E(G) ); equivalently, 

where the two vectors of vertex-values and W are 
indexed by a common discrete ordering of V(G) with 
W = [wvu](v,u)∈V(G)×V(G).

Motivation of Our Study

Based on the framework and its variants for distributed 
function computation, researches and studies are focused 
on mathematical interplays among:

• Time-(in)variance of network-topology.
• Granularity of time-step: discrete versus continuous.
• Choice of base field: special (real or complexes) versus 

arbitrary (finite or infinite).

xv[k + 1] =
∑

u∈V(G)

wvuxu[k],

transpose of (xv[k + 1] ∣ v ∈ V(G))

= W ⋅ transpose of (xv[k] ∣ v ∈ V(G))
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• Characterization of calculable functions.
• Convergence criteria and rates (finite, asymptotic, and/

or probabilistic).
• Adoption and algebraic properties of weight-matrix for 

linear interactive schemes: random weight-matrix, spec-
trum of eigenvalues, base field, etc.

• Resilience and robustness of computation algorithmics 
for network-topology in the presence/absence of mali-
cious vertices.

• Lower and upper bounds on (linear) iteration required for 
the convergence of calculable functions.

Summarized results, research studies, and references are 
available in, for examples, [11–14, 16, 17].

Sundaram and Hadjicostis [11, 12] present their research 
findings in the finite convergence of distributed informa-
tion dissemination and function computation in the model 
with linear iterative algorithmics stated above, among other 
contributions in distributed function computation and data-
stream transmission in the presences of noise and malicious 
vertices. More specifically, (1) they employ structural theo-
ries in observability and invertibility of linear systems over 
arbitrary finite fields to obtain lower and upper bounds on 
the number of linear iterations for achieving network-con-
sensus for finite convergence of arbitrary functions, and 
(2) the bounds are valid for all initial vertex-values of arbitrary 
finite fields as arguments to the functions in connected time-
invariant topologies with almost all random weight-matrices.

For a time-invariant topology with underlying digraph 
G and a vertex u ∈ V(G) , denote by degG,in(u) the in-degree 
of u in G, and by �G,in(u) the in-neighbor of u in G; hence 
� ∗
G,in

(u) denotes the in-closure of u in G, that is,

Consider all possible families of directed trees that are: (1) a 
vertex-decomposition of � ∗

G,in
(u) − {u} , and (2) rooted in (as 

subset of) �G,in(u) . Denote by:

Their upper-bound result for a vertex u ∈ V(G) is stated as 
follows: for every linear iterative scheme with random 
weight-matrix over a finite base field �  of cardinality 
|� | ≥ (�G,u − 1)(|� ∗

G,in
(u)| − degG,in(u) −

1

2
�G,u) , then, with 

probability at least 1 − 1

|� | (�G,u − 1)(|� ∗
G,in

(u)| − deg
G,in(u)

−
1

2
�
G,u) , the vertex u can calculate arbitrary functions of 

arbitrary initial vertex-values xv[0] ∈ �  for all v ∈ � ∗
G,in

(u) 

� ∗
G,in

(u) = ∪�≥0�
�
G,in

(u)

= {v ∈ V(G) ∣ there exists a dipath in G from v to u}.

�G,u = min{max{order(Ti) ∣ 1 ≤ i ≤ n} ∣

{Ti}
n
i=1

is a family of directed trees that are:

(1) a vertex-decomposition of � ∗
G,in

(u) − {u}, and

(2) rooted in (as subset of) �G,in(u)}.

via the linear iterative scheme within at most �G,u 
time-steps.

Sundaram conjectures in [11] that �G,u may also serve 
as a lower bound on the number of time-steps for a ver-
tex u ∈ V(G) to receive the initial vertex-values of all 
v ∈ � ∗

G,in
(u) regardless of underlying protocol or algorith-

mics. Hence, linear iterative schemes are time-optimal in 
disseminating information over arbitrary time-invariant con-
nected networks.

Toulouse and Minh [15] refute the conjecture via the 
notion of rank-step sequences for linear iterative schemes 
over connected network with an explicit counter-example 
in Fig. 1.

In accordance with the min–max formulation of �G,u , a 
direct argument justifying the counter-example is provided 
as follows:

1. We view the annotated graph G in Fig. 1 in which each 
edge represents the co-existence of its two directed ver-
sions. For the vertex u ∈ V(G) , the number of time-steps 
to receive the initial vertex-values of all v ∈ � ∗

G,in
(u) 

( = V(G) ), regardless of underlying protocol or algorith-
mics, is order(S) + 2—which is realized by the dipath 
composed of the serial component S and vertices v5 , v4 , 
and u.

2. We show below that �G,u = order(S) + 3 , hence can not 
serve as a lower bound on the number of time-steps 
mentioned in item 1 above—as suggested in the conjec-
ture [11].

To show that �G,u ≤ order(S) + 3 , we consider the following 
family of directed trees, {T̂i}3i=1 , which are a vertex-decom-
position of � ∗

G,in
(u) − {u} and are rooted in (as subset of) 

�G,in(u) : T̂1 is composed of the serial component S and ver-
tices v5 , v7 , and v6 with order(T̂1) = order(S) + 3 , and T̂2 and 
T̂3 saturate the remaining vertices in the parallel component 
P and vertices v3 , v2 , v1 , and v4 in an almost equipotent man-
ner with order(T̂2) = ⌊ order(P)+4

2
⌋ and order(T̂3) = ⌈ order(P)+4

2
⌉ . 

Since the two components P and S are equipotent, we have:

G

u

v1 v2 v3

v4 v5

v6 v7

S

P

· · ·

· · ·

· · ·
· · ·

Fig. 1  A counter-example graph G, in which the embedded parallel 
component P and serial component S satisfying order(P) = order(S) , 
to the lower-bound conjecture in terms of �G,u in [11]
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Therefore,

To show the reverse inequality that �G,u ≥ order(S) + 3 , con-
sider an arbitrary family of n (where n ≤ 3 ) ordered trees 
that are a vertex-decomposition of � ∗

G,in
(u) − {u} and are 

rooted in (as subset of) �G,in(u).
Case when n = 1 : The single directed tree that saturates all 

the vertices of � ∗
G,in

(u) − {u} is of order of:

as desired.
Case when n = 2 : Among the two directed trees that satu-

rate all the vertices of � ∗
G,in

(u) − {u} , the larger-order one is of 
order bounded below by their average order of order(P)+order(S)+7

2
 , 

therefore, by:

as desired.
Case when n = 3 : Consider the three subcases of saturation 

of vertices v6 , v7 , and v5 (hence the serial component S).
Subcase when a directed tree consists of v6 only: We pro-

ceed as in the case of n = 2 . Among the two other directed 
trees that saturate the remaining vertices in the two compo-
nents P and S, and vertices v1 , v2 , v3 , v4 , v5 , and v7 , the larger-
order one is of order bounded below by:

as desired.
Subcase when a directed tree consists of v6 and v7 only: 

Similar to the previous subcase, the average order of the two 
other directed trees is order(P)+order(S)+5

2
 , which yields a desired 

lower bound of:

order(T̂1) = order(S) + 3

>

⌈
order(P) + 4

2

⌉
= max{order(T̂2), order(T̂3)}.

𝛼G,u ≤ max{order(T̂i) ∣ 1 ≤ i ≤ 3}

= order(T̂1) = order(S) + 3.

order(P) + order(S) + 7 > order(T̂1) (= order(S) + 3),

⌈
order(P) + order(S) + 7

2

⌉
=

⌈
2 order(S) + 7

2

⌉

= order(S) + 4

> order(T̂1) (= order(S) + 3),

⌈
order(P) + order(S) + 6

2

⌉
=

⌈
2 order(S) + 6

2

⌉

= order(S) + 3 = order(T̂1),

⌈
order(P) + order(S) + 5

2

⌉
=

⌈
2 order(S) + 5

2

⌉

= order(S) + 3.

Subcase when a directed tree saturates v6 , v7 , and v5 (hence, 
the serial component S): Such a directed tree is of order 
bounded below by:

as desired.
Combining the three cases of n ∈ {1, 2, 3} , we conclude 

that �G,u ≥ order(S) + 3 . Hence, the two inequalities on �G,u 
yield that �G,u = order(S) + 3 , which confirms the counter-
example graph G in Fig. 1.

To complement the explicitly constructed counter-exam-
ple to the lower-bound conjecture on the number of time-
steps for distributed function computation and information 
dissemination with respect to a given vertex, we present 
in this article a lower bound on the number of time-steps 
for a vertex u ∈ V(G) to receive the initial vertex-values 
of all v ∈ � ∗

G,in
(u) regardless of underlying protocol or 

algorithmics in a time-invariant network via the notion of 
vertex-eccentricity.

Revised Lower Bound for Distributed 
Function Computation and Information 
Dissemination

Consider an arbitrary vertex u ∈ V(G) , and assume a non-
trivial � ∗

G,in
(u) ( |𝛤 ∗

G,in
(u)| > 1 ) hereinafter. We develop a 

lower bound on the number of time-steps required for the 
vertex u to receive the (initial) vertex-values of all vertices of 
� ∗
G,in

(u) (regardless of underlying protocol, including linear 
iterative schemes). See Fig. 2 for an example of � ∗

G,in
(u).

For two vertices u and v of G, �⃗dG(u, v) denotes the 
directed distance from u to v in G, that is,

For a vertex u of G, eG,in(u) denotes the in-eccentricity of u 
in G, which is the maximum directed distance from a vertex 
to u in G, that is,

Following the above-stated distributed computation frame-
work as in [12] and for their conjecture, we develop a lower-
bound result based on the notion of eccentricity (instead of 
“order” or “size” as in the conjecture):

1. For every (linear or non-linear) iteration scheme, in 
which a vertex’s value or information is transmitted to 
its out-neighbors via their incidence directed edges in 
unit time-step, requires at least eG,in(u) time-steps for 
vertex u to access values/information of all the vertices 

order(S) + 3 = order(T̂1),

�⃗dG(u, v) =

{
length of a shortest dipath from u to v in G if exists,

∞ otherwise.

eG,in(u) = max{ �⃗dG(v, u)
���

minimum length of a dipath from v to u in G

∣ v ∈ V(G)}.
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in � ∗
G,in

(u) . Thus, eG,in(u) serves as a lower bound on the 
number of time-steps required for function computation 
by vertex u via such iteration scheme.

2. In accordance with the distributed framework for our 
function computation, we show below that: 

We illustrate an example organization of � ∗
G,in

(u) − {u} 
in a family of vertex-disjoint directed trees in Fig. 3.

eG,in(u) = 1 +min{max{eTi,in(root(Ti))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

= depth(Ti)

∣ 1 ≤ i ≤ n} ∣

{Ti}
n
i=1

is a family of directed trees that are:

(1) a vertex-decomposition of � ∗
G,in

(u) − {u}, and

(2) rooted in (as subset of) �G,in(u)}.

To show the above equality for eG,in(u) , we prove the two 
embedded inequalities in the following sections.

Upper Bound for Vertex‑Eccentricity

We first prove that:

equivalently,

for arbitrary family of directed trees, {Ti}ni=1 , which are a 
vertex-decomposition of � ∗

G,in
(u) − {u} and are rooted in (as 

subset of) �G,in(u).
Consider an arbitrary family of directed trees, {Ti}ni=1 , which 

are a vertex-decomposition of � ∗
G,in

(u) − {u} and are rooted in 
(as subset of) �G,in(u) . The in-eccentricity eG,in(u) of u in G is 
realized by a dipath P from a vertex v ∈ � ∗

G,in
(u) − {u} to u in 

G. Since {Ti}ni=1 is a vertex-decomposition of � ∗
G,in

(u) − {u} , 
we have v ∈ V(Ti) for some i ∈ {1, 2,… , n} . We depict the 
scenario in Fig. 4.

Now,

eG,in(u) ≤ 1 +min{max{eTi,in(root(Ti))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

= depth(Ti)

∣ 1 ≤ i ≤ n} ∣

{Ti}
n
i=1

is a family of directed trees that are:

(1) a vertex-decomposition of � ∗
G,in

(u) − {u}, and

(2) rooted in (as subset of) �G,in(u)};

eG,in(u) ≤ 1 +max{eTi,in(root(Ti))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

= depth(Ti)

∣ 1 ≤ i ≤ n}

G

u Γ ∗
G,in(u)

Fig. 2  For a vertex u in a digraph G: an example organization of the 
in-closure � ∗

G,in
(u) of u in G 

Fig. 3  For a vertex u in a 
digraph G: an example organi-
zation of � ∗

G,in
(u) − {u} in a 

family {Ti}ni=1 of directed trees 
that are: (1) a vertex-decom-
position of � ∗

G,in
(u) − {u} , and 

(2) rooted in (as subset of) 
�G,in(u)

u

root(T1)

root(T2)

root(Tn)

T1

T2

Tn

...

...
...

{root(Ti) | 1 ≤ i ≤ n} is a subset (not necessarily proper) of Γ ∗
G,in(u)

eTi,in(root(Ti)) = depth(Ti)
for i = 1, 2, . . . , n

Γ ∗
G,in(u)
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as desired.

Lower Bound for Vertex‑Eccentricity

To show the reverse inequality:

it suffices to construct a family {Ti}ni=1 of directed trees that 
are a vertex-decomposition of � ∗

G,in
(u) − {u} , and are rooted 

in (as subset of) �G,in(u) , such that:

We proceed with an inductive construction of a sequence 
(P1,P2,…) of dipaths with common terminal vertices u such 
that the sequence (P1 − {u},P2 − {u},…) is organized as a 
family {T1, T2,… , Ti} , where i ≥ 1 , of directed trees such 
that:

1. The family {T1, T2,… , Ti} consists of mutually vertex-
disjoint directed trees with their roots in �G,in(u),

eG,in(u)
���

in G

= length(P)
�������

in G

= �⃗dG(v, u)
���

in G

≤ length((unique) dipath from v to root(Ti) in Ti concatenated

with directed edge (root(Ti), u)) since Ti is a sub-digraph of

the digraph vertex-spanned by 𝛤 ∗
G,in

(u)

≤ depth(Ti) + 1

≤ 1 +max{depth(Ti) ∣ 1 ≤ i ≤ n}

eG,in(u) ≥ 1 +min{max{eTi,in(root(Ti))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

= depth(Ti)

∣ 1 ≤ i ≤ n} ∣

{Ti}
n
i=1

is a family of directed trees that are:

(1) a vertex-decomposition of � ∗
G,in

(u) − {u}, and

(2) rooted in (as subset of) �G,in(u)},

eG,in(u) ≥ 1 +max{depth(Ti) ∣ 1 ≤ i ≤ n}.

2. Each directed tree in the family provides a short-
est dipath (in G) for each of its vertices to u, that is, 
for every vertex v ∈ V(Tj) where j ∈ {1, 2,… , i} , the 
(unique) dipath from v to root(Tj) in Tj yields �⃗dG(v, u) : 

 and
3. The in-eccentricity of u in G is bounded below as: 

See an example configuration in Fig. 5.
Basis step: For P1 , we may employ a dipath from a ver-

tex, say v, in � ∗
G,in

(u) − {u} to u in G that realizes �⃗dG(v, u) . 
Then, designate P1 as such a path, and T1 = {P1 − {u}}.

For the family {T1} , we can verify the above-stated 
three items 1, 2 (via “shortest dipath in G” enjoys “opti-
mal substructure property in G” by typical cut-and-paste 
argument), and 3.

Induction step: Assume that we have constructed 
a sequence (P1,P2,… ,Pj) of dipaths with com-
mon terminal vertices u such that the sequence 
(P1 − {u},P2 − {u},… ,Pj − {u}) is organized as a family 
{T1, T2,… , Ti} , where j ≥ i ≥ 1 , of directed trees that satis-
fies the above-stated items 1, 2, and 3.

If the family {T1, T2,… , Ti} yields a vertex-decomposi-
tion of � ∗

G,in
(u) − {u} , then the inductive construction is 

complete. Thus, we may assume that there exists a vertex 
v ∈ (� ∗

G,in
(u) − {u}) − ∪i

�=1
V(T�) . We construct a desired 

dipath Pj+1 from v to u in G as follows.
First, consider a dipath P from v to u in G that realizes 

�⃗dG(v, u) (that is, length(P) = �⃗dG(v, u) ). Observe that,

length((unique) dipath from v to root(Tj) concatenated

with directed edge (root(Tj), u)) =
�⃗dG(v, u),

eG,in(u) ≥ 1 +max{depth(T1), depth(T2),… , depth(Ti)}.

length(P) = �⃗dG(v, u) ≤ max{ �⃗dG(v, u) ∣ v ∈ V(G)}
�����������������������������������

eG,in(u)

.

u

v

P

root(T1)

root(Ti)

root(Tj)

root(T)

T1

Ti

Tj

Tn

...
...

...

...

...

...
Γ ∗
G,in(u)

Fig. 4  For a vertex u in a digraph G: the in-eccentricity eG,in(u) of u 
in G is realized by a dipath P from a vertex v ∈ � ∗

G,in
(u) − {u} to u in 

G 

u

P1

P2

P3

P4

P5

P6

root(T1)

root(T2)

root(T3)

T1

T2

T3

...
...

...

Fig. 5  For a vertex u in a digraph G: an inductive construction of a 
sequence (P1,P2,…) of dipaths with common terminal vertices u 
such that the sequence (P1 − {u},P2 − {u},…) is organized as a fam-
ily {T1,T2,… ,Ti} , where i ≥ 1 , of directed trees that satisfies the 
stated conditions in items 1, 2, and 3
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Consider the two cases of P based on its possible intersection 
with the constructed directed forest/family {T1, T2,… , Ti}—
which are shown in Fig. 6.

Case 1: V(P) ∩ ∪i
�=1

V(T�) = � . From the above observa-
tion that length(P) ≤ eG,in(u) , hence for Pj+1 , we may 
employ P by designating Pj+1 = P and Ti+1 = {Pj+1 − {u}} 
as in the basis step. We can verify the above-stated items 1, 
2, and 3 for the augmented family {T1, T2,… , Ti+1}.

Case 2: V(P) ∩ ∪i
�=1

V(T�) ≠ � . Denote the first entrance 
of the dipath P into ∪i

�=1
V(T�) by w, say w ∈ V(P) ∩ V(Tk) 

for some k ∈ {1, 2,… , i}.
With the denotations/labelings in Fig. 7, we have two pos-

sible dipaths from w to u: (1) the dipath:

and (2) the dipath P2 such that:

What can we say about length(Q) versus length(P2) ? They 
must be equal—via a proof by contradiction as follows:

1. Suppose that length(Q) < length(P2) : The dipath from 
v, via w, to u formed by the concatenation of P1 (v 
to w) and Q (w, via root(Tk) , to u) is a shorter dipath 

Q = (unique) dipath from w to root(Tk)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

contained in Tk

concatenated with

the directed edge (root(Tk), u),

P = dipath from v to w
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

via vertices in (� ∗
G,in

(u)−{u})−∪i
�=1

V(T�)

concatenated with dipath P2
⏟⏞⏟⏞⏟

from w to u in G

.

than P—which contradicts to the assumption that 
length(P) = �⃗dG(v, u).

2. Suppose that length(Q) > length(P2) : The existence of 
such dipath P2 from v to u in G contradicts to the above 
item 2 that length(Q) = �⃗dG(v, u).

Now, we let:

and include the dipath Pj+1 − {u} into the directed tree Tk.
We can check/verify the above-stated items 1, 2, and 3:

1. The statement is obvious,
2. The condition follows from that “shortest dipath in G” 

enjoys “optimal substructure property in G”, and
3. By noting that: 

This completes the inductive construction, and we have 
shown the reverse inequality.

Lower Bounds for Vertex‑Eccentricity 
via Graph‑Parameters

The min-max formulation of eG,in(u) , which was developed 
above for lower-bounding the number of time-steps for 
function computation by vertex u in � ∗

G,in
(u) , motivates us 

Pj+1 = dipath P1 from v to u in G
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

via vertices in (� ∗
G,in

(u)−{u})−∪i
�=1

V(T�)

concatenated with dipath Q from w to u
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

via vertices in Tk

,

eG,in(u) ≥
�⃗dG(v, u) = length(P).

u

v

root(T1)

root(T2)

root(Ti)

T1

T2

Ti

case 1 of P

case 2 of P

...
...

...

Fig. 6  For a vertex u in a digraph G: assume the inductive con-
struction of a sequence (P1,P2,… ,Pj) of dipaths that results in 
a family {T1,T2,… ,Ti} , where j ≥ i ≥ 1 , of mutually vertex-
disjoint directed trees with their roots in � ∗

G,in
(u) − {u} that satis-

fies the stated conditions in items  1, 2, and 3, then, for a vertex 
v ∈ (� ∗

G,in
(u) − {u}) − ∪i

�=1
V(T�) , construct a desired dipath Pj+1 

from v to u in G by considering a dipath P from v to u in G with 
length(P) = �⃗dG(v, u) in two cases

u

v

w

root(T1)

root(T2)

root(Ti)

root(Tk)

T1

T2

Ti

Tk

case 1 of P

case 2 of P

...

...
P1

P2

Q

Fig. 7  For a vertex u in a digraph G: case  2 of P with 
V(P) ∩ ∪i

�=1
V(T�) ≠ � is considered
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to study lower bounds for (maximum) vertex-eccentricity 
in terms of common graph-parameters of the underlying 
graph G: (1) maximum in-degree, and (2) order and size.

Vertex‑Eccentricity and Maximum In‑Degree

We derive a lower bound on eG,in(u) from the knowledge of 
the maximum in-degree of G (vertex-spanned by � ∗

G,in
(u) ), 

which yields a (possibly weaker) lower bound on the num-
ber of time-steps for vertex u to access values/information 
of all the vertices in � ∗

G,in
(u).

Denote by �G,in(u) ( ≥ 1 ) the maximum in-degree of the 
subdigraph of G vertex-spanned by � ∗

G,in
(u).

Theorem 1 For a digraph G and a vertex u ∈ V(G),

Proof Consider an arbitrary digraph G with a vertex 
u ∈ V(G) . Organize the in-closure of u in G as the sequence 
of successive in-neighbors as illustrated in Fig. 8: at most 
�G,in(u)

i vertices of � ∗
G,in

(u) are at a directed distance of 
i to u for i = 0, 1,… , eG,in(u) , and we have the following 
inequality:

Consider the two cases for the �G,in(u)-value.
Case when �G,in(u) = 1 : The above inequality on |� ∗

G,in
(u)| 

is:

eG,in(u) ≥

⎧
⎪⎨⎪⎩

�� ∗
G,in

(u)� − 1 if �G,in(u) = 1,

log�G,in(u)
((�G,in(u) − 1)�� ∗

G,in
(u)� + 1) − 1 otherwise

(�G,in(u) ≥ 2).

|� ∗
G,in

(u)| ≤ 1 + �G,in(u) + �G,in(u)
2 +⋯ + �G,in(u)

eG,in(u).

|� ∗
G,in

(u)| ≤ 1 + eG,in(u),

which gives that eG,in(u) ≥ |� ∗
G,in

(u)| − 1.
Case when �G,in(u) ≥ 2 : The above inequality on |� ∗

G,in
(u)| 

is:

which yields a lower bound on eG,in(u):

  ◻

We can obtain desired lower bounds in analogous fashion 
with similar graph-parameters such a regularity in-degree, 
and maximum and regularity degrees.

Maximum Vertex‑Eccentricity and Graph‑Order 
and ‑Size

The diameter of a digraph G, denoted by dia(G) , is the maxi-
mum in-eccentricity of all the vertices of G; that is,

A digraph G is strongly connected if for every pair of verti-
ces u, v ∈ V(G) , there exists a dipath from u to v (and vice-
versa) in G.

For a strongly connected digraph, we study a lower bound 
on its diameter in terms of its order and size, and show the 
optimality of the diameter-bound with a family of explicitly 
constructed strongly connected digraphs.

|� ∗
G,in

(u)| ≤ �G,in(u)
eG,in(u)+1 − 1

�G,in(u) − 1
,

eG,in(u) ≥ log�G,in(u)
((�G,in(u) − 1)|� ∗

G,in
(u)| + 1) − 1.

dia(G) = max{eG,in(u) ∣ u ∈ V(G)}

= max{ �⃗dG(u, v) ∣ u, v ∈ V(G)}.

Fig. 8  For a vertex u in a 
digraph G: organize vertices of 
the in-closure � ∗

G,in
(u) of u in 

G according to their directed 
distances to u 

u · · ·· · ·...
...

at most ∆G,in(u) vertices
at a directed distance
of 1 to u

at most ∆G,in(u)2 vertices
at a directed distance
of 2 to u

at most ∆G,in(u)i vertices
at a directed distance
of i to u
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Theorem 2 For a strongly connected digraph G,

Proof For the case of full diameter: dia(G) = |V(G)| − 1 , the 
extremity of dia(G) gives that |E(G)| ≥ |V(G)| − 1 , and the 
strong connectedness of G increases the lower bound by 1: 
|E(G)| ≥ |V(G)| . A size-optimal strongly connected digraph 
of full diameter is shown in Fig. 9a.

We  s tudy  t he  gene ra l  ca se ,  hence fo r t h , 
dia(G) ≤ |V(G)| − 2 . Our approach in deriving a desired 
lower bound on |E(G)|, hence on dia(G) , relies on: 
(1) embedding in G a vertex-spanning rooted directed tree 
with depth of dia(G) , and (2) then relating the order |V(G)|, 
size |E(G)|, and diameter dia(G) of G via a classification/enu-
meration of all leaf-to-root dipaths into families of dipaths 
with shared versus non-shared suffixes (towards the root).

To have a refined derivation, the rooted directed tree is 
seeded with a maximum-length stemming dipath to ensure 
the consideration of near-leaf proximity of the first/lowest 
common descendants of shared suffixes of the leaf-to-root 
dipaths.

Denote by R a longest dipath of vertices with in-degree of 
1 in G, that is, (1) for every vertex u ∈ V(R) , degG,in(u) = 1 , 
and (2) length(R) is the maximum among those of dipaths 
satisfying item (1). Note that 0 ≤ length(R) ≤ dia(G) − 1 . 
Denote by r the terminal vertex of R, and by R̂ the dipath 
that concatenates the unique vertex s (and its directed edge) 
adjacent to the initial vertex of R together with the dipath R.

�E(G)� ≥
⎧
⎪⎨⎪⎩

�V(G)� if dia(G) = �V(G)� − 1,

�V(G)� − 1 +
2(�V(G)�−1)

dia(G)
otherwise

equivalently, dia(G) ≥
2(�V(G)�−1)

�E(G)�−�V(G)�+1 (dia(G) ≤ �V(G)� − 2).

Employing R̂ as a seed-structure, we grow a vertex-span-
ning rooted (at the terminal vertex r of R) directed in-tree 
Tr,in of G [9] in which for every vertex u ∈ Tr,in ( = V(G) ), 
there exists a unique dipath from u to r in Tr,in.

Furthermore, we limit the depth of Tr,in with 
depth(Tr,in) ≤ dia(G) . For instance, we apply Dijkstra’s sin-
gle-source shortest-dipaths algorithm (see, for example, [3]) 
with the seed-structure of R̂ , which results in a vertex-span-
ning directed in-tree Tr,in of G such that: (1) root(Tr,in) = r , 
and (2) for every vertex u ∈ V(Tr,in) ( = V(G) ), the unique 
dipath P from u to the root r of Tr,in satisfies that: (2.1) P is a 
shortest dipath from u to r in G with length(P) ≤ dia(G) , and 
(2.2) if u ∈ V(R̂) then P is the suffix of R̂ (with initial vertex 
u) else P contains R̂ as its suffix. We depict in Fig. 9b the 
topological structure of a vertex-spanning rooted directed 
in-tree Tr,in of a strongly connected digraph G.

Note that, due to the maximality of length(R) imposed 
above, every leaf-to-root dipath P must contain a vertex 
u ∈ V(P) that satisfies the following sharing-condition: 
(1) degG,in(u) ≥ 2 , and (2) the (first) appearance of such u is 
within a directed distance of length(R̂) from the initial leaf-

vertex of P, that is, �⃗dTr,in (initial(P), u) ≤ length(R̂).
Denote by L the family of all leaf-to-root dipaths of Tr,in 

(hence the number of leaf-vertices of Tr,in is |L| ). We parti-
tion L into two disjoint subfamilies S and L − S based on 
the sharing-condition constrained to Tr,in:

that is, the degree-constraint is satisfied in the context of Tr,in
—with at least two tree-edges of E(Tr,in) incident/convergent 
to the first/lowest common descendant u shared with other 
dipath(s) of L . An annotated configuration of leaf-to-root 
dipaths of S versus L − S is illustrated in Fig. 9b.

After embedding Tr,in in G, we enumerate V(G) and E(G) 
with respect to the partition {S,L − S} and establish an 
upper and lower bounds on |V(G)| and |E(G)|, respectively, 
as follows.

1. Upper-bounding |V(G)|:

 1.1. For  every leaf- to-root  dipath P ∈ S  , 
there exists a vertex u ∈ V(P) such that 
�⃗dTr,in (initial(P), u) ≤ length(R̂) and u is a first/low-
est common descendant shared with at least one 
other leaf-to-root dipath P� ∈ S . For the dipath-

S = {P ∈ L ∣ there exists u ∈ V(P) such that �⃗dTr,in(initial(P), u)

≤ length(R̂) and degTr,in,in(u) ≥ 2};

(a)

(b)

G

G

Tr,in
S

L − S

r s

R
R̂

leaf-vertex
directed tree-edge
directed non-tree-edge

depth(Tr,in) ≤ dia(G)

· · ·

· · ·

...

...

Fig. 9  For a strongly connected digraph G: a  when 
dia(G) = |V(G)| − 1 (full diameter): |E(G)| ≥ |V(G)| ; b  when 
dia(G) ≤ |V(G)| − 2 : dia(G) ≥ 2(|V(G)|−1)

|E(G)|−|V(G)|+1
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pair P and P′ , we include: (1) all the vertices of 
the prefix of P preceding to s ( = initial(R̂) ), that 
is, V(P − R̂) , in the enumeration of V(G) with: 

and (2) all the vertices of the prefix of P′ preced-
ing to u, that is, �⃗dTr,in (initial(P), u) such vertices, 
in the enumeration of V(G) with: 

Therefore, an upper bound on the number of ver-
tices of the prefixes P − R̂ for all P ∈ S that are 
included in the enumeration of V(G) is: 

 1.2. For every leaf-to-root dipath P ∈ L − S , the ver-
tex s ( = initial(R̂) ) may be the first/lowest com-
mon descendant that is shared with other leaf-to-
root dipaths of S . Therefore, an upper bound on 
the number of vertices of the prefixes P − R̂ for 
all P ∈ L − S that are included in the enumera-
tion of V(G) is: 

 1.3. All the leaf-to-root dipaths of L share 
the common suffix R̂ , which contributes 
length(R̂) + 1 = length(R) + 2 vertices in the 
enumeration of V(G).

  Hence, the three above-derived upper bounds yield 
that: 

2. Lower-bounding |E(G)|:

 2.1. The ver tex-spanning rooted di rected 
i n - t r e e  Tr,in  o f  G  c o n t r i b u t e s 
|E(Tr,in)| = |V(Tr,in)| − 1 = |V(G)| − 1 tree-edges 
in the enumeration of E(G).

|V(P − R̂)| = (length(P) + 1) − (length(R) + 2)

= length(P) − length(R) − 1

≤ depth(Tr,in) − length(R) − 1

= dia(G) − length(R) − 1,

�⃗dTr,in(initial(P), u) ≤ length(R̂) = length(R) + 1.

|S|
2
(dia(G) − length(R) − 1)

+
|S|
2
(length(R) + 1) =

|S|
2
dia(G).

|L − S|(dia(G) − length(R) − 1).

|V(G)| ≤ |S|
2
dia(G) + |L − S|(dia(G) − length(R) − 1)

+ length(R) + 2.

 2.2. Every leaf-to-root dipath P of L satisfies the 
above-stated sharing-condition in the context of 
G: there exists a vertex u of P, within a directed 
distance of length(R̂) from initial(P) , has 
degG,in(u) ≥ 2 . The membership of a leaf-to-root 
dipath P of S demands the degree-requirement in 
the context of Tr,in : degTr,in,in(u) ≥ 2 . Hence, every 
leaf-to-root dipath P ∈ L − S must contain a ver-
tex u (within a directed distance of length(R̂) 
from initial(P) ) to which at least one directed 
non-tree-edge of E(G) − E(Tr,in) is incident/con-
vergent. Therefore, a lower bound on the number 
of directed non-tree-edges of E(G) − E(Tr,in) inci-
dent to P (within a directed distance of length(R̂) 
from initial(P) ) for all P ∈ L − S  that are 
included in the enumeration of E(G) is |L − S|.

 2.3. The strong connectedness of G implies that for 
every leaf-vertex of Tr,in has its in-degree of at 
least 1. Therefore, a lower bound on the number 
of directed non-tree-edges incident to all leaf-
vertices of Tr,in that are included in the enumera-
tion of E(G) is |L|.

 2.4. The strong connectedness of G also entails 
that for the root-vertex r of Tr,in , there exists a 
directed non-tree-edge incident from r to a ver-
tex u ∈ V(G) ( = V(Tr,in) ). Consider the two cases 
of the containment of S in L that decides if the 
directed non-tree-edge (r, u) may contribute addi-
tionally to the enumeration of E(G).

   Case when S ⊊ L : Since L − S ≠ � , the vertex 
u may appear in a leaf-to-root dipath P ∈ L − S 
(within a directed distance of length(R̂) from 
initial(P) ), and the directed non-tree-edge (r, u) 
may have been included in the enumeration of 
E(G) above in item 2.2. In addition, if u is a leaf-
vertex in Tr,in , the directed non-tree-edge (r, u) 
may have been accounted for in item 2.3.

   Case when S = L : The vertex u must appear in 
a leaf-to-root dipath P ∈ S . We claim that there 
exists a directed non-tree-edge that contributes 
additionally to the enumeration of E(G). Con-
sider the two subcases of u ∈ V(P) : (1) If u is 
not the initial leaf-vertex of P, then the directed 
non-tree-edge (r, u) has not been included in 
the enumeration of E(G) above in item 2.3 nor 
item 2.2 (as L − S = � ), or (2) If u = initial(P) , 
then the maximality of length(R) imposed above 
implies that degG,in(u) ≠ 1 ( > 1 , in fact, due to the 
directed non-tree-edge (r, u) incident to u). Thus, 
there exists an additional directed non-tree-edge 
incident to u that has not been included in the 
enumeration of E(G) above in item 2.3.
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  Hence, the four above-derived lower bounds yield 
that: 

We now combine the above upper bound on |V(G)| and 
lower bound on |E(G)| to achieve the desired lower bound 
on dia(G) in terms of |V(G)| and |E(G)|. In parallel to the 
consideration of the containment of S in L , we consider 
the following two cases.

Case when S ⊊ L : The upper and lower bounds on |V(G)| 
and |E(G)|, respectively, are:

and

Eliminating |S| (and length(R) ) from the two inequalities 
above, we obtain that:

which yields that:

From the assumption of S ⊊ L,

that is,

as desired.
Case when S = L : The upper and lower bounds on |V(G)| 

and |E(G)|, respectively, are:

|E(G)| ≥
{

|V(G)| − 1 + |L − S| + |L| if S ⊊ L,

|V(G)| − 1 + |L − S| + |L| + 1 otherwise (S = L).

|V(G)| ≤ |S|
2
dia(G) + |L − S|(dia(G) − length(R) − 1)

+ length(R) + 2,

|E(G)| ≥ |V(G)| − 1 + |L − S| + |L|
= |V(G)| − 1 + |L − S| + |S| + |L − S|.

2|V(G)| − 2|L − S|(dia(G) − length(R) − 1) − 2 length(R) − 4

dia(G)
≤ |S|

≤ |E(G)| − |V(G)| + 1 − 2|L − S|,

(|V(G)| − 1)dia(G) + 2(|V(G)| − 1)

+ 2 (length(R) − 1)(|L − S| − 1) ≤ |E(G)|dia(G).

|E(G)|dia(G) ≥ (|V(G)| − 1)dia(G) + 2(|V(G)| − 1),

|E(G)| ≥ |V(G)| − 1 +
2(|V(G)| − 1)

dia(G)
,

|V(G)| ≤ |S|
2
dia(G) + |L − S|(dia(G) − length(R) − 1)

+ length(R) + 2

=
|L|
2

dia(G) + length(R) + 2,

and

The two inequalities above give that:

therefore,

Consider the algebraic sign of 1 − 2(length(R)+1)

dia(G)
.

If 1 − 2(length(R)+1)

dia(G)
≥ 0 (the seed-structure of Tr,in is a rela-

tively short maximum-length stemming dipath R), then:

as desired.
Otherwise, assume that 1 − 2(length(R)+1)

dia(G)
< 0 . We revise 

our approach above in upper-bounding |V(G)| (items 1.2 and 
1.3) and derive a lower bound on |L| as follows.

For every leaf-to-root dipath P ∈ L ( = S ), the vertex-set 
of the prefix P preceding to s ( = initial(R̂) ) is constrained by:

Therefore, an upper bound on the number of vertices of the 
prefixes P − R̂ for all P ∈ L that are included in this enu-
meration of V(G) is:

All the leaf-to-root dipaths of L share the common suffix R̂ , 
which contributes length(R) + 2 vertices in this enumeration 
of V(G).

Hence, the two above-stated upper bounds yield that:

|E(G)| ≥ |V(G)| − 1 + |L − S| + |L| + 1

= |V(G)| − 1 + |L| + 1.

2|V(G)| − 2 length(R) − 4

dia(G)
≤ |L| ≤ |E(G)| − |V(G)|,

|E(G)| ≥ |V(G)| + 2|V(G)| − 2 length(R) − 4

dia(G)

= |V(G)| + 2(|V(G)| − 1)

dia(G)
−

2(length(R) + 1)

dia(G)

= |V(G)| − 1 +
2(|V(G)| − 1)

dia(G)

+

(
1 −

2(length(R) + 1)

dia(G)

)
.

|E(G)| ≥ |V(G)| − 1 +
2(|V(G)| − 1)

dia(G)

+

(
1 −

2(length(R) + 1)

dia(G)

)

≥ |V(G)| − 1 +
2(|V(G)| − 1)

dia(G)
,

|V(P − R̂)| ≤ dia(G) − length(R) − 1.

|L|(dia(G) − length(R) − 1).

|V(G)| ≤ |L|(dia(G) − length(R) − 1) + length(R) + 2,
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which provides a lower bound on |L| with further 
simplification:

From the assumption that 1 − 2(length(R)+1)

dia(G)
< 0 , which implies 

that:

the above lower bound on |L| gives that:

Hence, the lower bound on |E(G)| derived above (for this 
case of S = L ) is revised as follows:

as desired.
Thus, for dia(G) ≤ |V(G)| − 2 and in either case ( S ⊊ L 

or S = L ), we arrive at the same relationship for the order, 
size, and diameter of G:

equivalently,

  ◻

|L| ≥ |V(G)| − length(R) − 2

dia(G) − length(R) − 1

=
|V(G)| − 1 − dia(G) + (dia(G) − length(R) − 1)

dia(G) − length(R) − 1

=
|V(G)| − 1 − dia(G)

dia(G) − length(R) − 1
+ 1.

(0 ≤) dia(G) − (length(R) + 1) <
dia(G)

2
,

|L| ≥ |V(G)| − 1 − dia(G)

dia(G) − (length(R) + 1)
+ 1

>
|V(G)| − 1 − dia(G)

dia(G)

2

+ 1

=
2(|V(G)| − 1)

dia(G)
− 1.

|E(G)| ≥ |V(G)| − 1 + |L − S| + |L| + 1

= |V(G)| − 1 + |L| + 1

> |V(G)| − 1 +

(
2(|V(G)| − 1)

dia(G)
− 1

)
+ 1

= |V(G)| − 1 +
2(|V(G)| − 1)

dia(G)
,

|E(G)| ≥ |V(G)| − 1 +
2(|V(G)| − 1)

dia(G)
;

dia(G) ≥
2(|V(G)| − 1)

|E(G)| − |V(G)| + 1
.

We construct a family of strongly connected digraphs that 
achieve the optimality of the above-derived diameter-bound. 
For each positive integer � , denote by C� a directed cycle 
of � + 1 vertices, and for each positive integer k, define a 
strongly connected digraph Gk,� to be an amalgamation of k 
(mutually edge-disjoint) copies of C� : C� ,1,C� ,2,… ,C� ,k that 
share a common vertex z. Figure 10a show the topological 
structure of Gk,�.

Corollary 3 The family of strongly connected digraphs Gk,� 
for all positive integers k and � is optimal for the relationship 
of the graph-parameters: order, size, and diameter estab-
lished in Theorem 2.

Proof  F o r  t h e  c a s e  o f  f u l l  p a r a m e t e r 
( graph-diameter = graph-order − 1 ), we consider the fam-
ily of Gk,� for k = 1 and all positive integers � . The strongly 
connected digraph G1,� is (a copy of) C� , which exhibits the 
following graph-parameters:

which satisfy that |E(G1,� )| = |V(G1,� )|.

|V(G1,� )| = � + 1 and |E(G1,� )| = � + 1, and

dia(G1,� ) = � = |V(G1,� )| − 1,

Gk,γ

Gk,γ

Cγ,1

Cγ,1

Cγ,i

Cγ,i

Cγ,j

Cγ,j

· · ·

· · ·

. . .

. . .

...

...

(a)

(b)

z

z

uv

u

v

Fig. 10  For each positive integers k and � : a  the strongly connected 
digraph Gk,� is an amalgamation of k (mutually edge-disjoint) cop-
ies of a directed cycle of � + 1 vertices: C� ,1,C� ,2,… ,C� ,k that share 
a common vertex; b  when � ≥ 2 and i, j ∈ {1, 2,… , k} with i ≠ j , 
(u�, v�) is a diametrical pair of vertices in C� ,i and C� ,j , respectively, 
with �⃗dGk,𝛾

(u�, v�) = 2𝛾
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For the general case of graph-diameter ≤ graph-order − 2 , 
we consider the family of Ck,� for all positive integers k ≥ 2 
and all positive integers � . The strongly connected digraph 
Gk,� is an amalgamation of k (mutually edge-independent) 
copies of C� sharing a common vertex z, which exhibits the 
following graph-parameters:

To compute the diameter of Gk,� , dia(G) , it suffices to notice 
that, for all i, j ∈ {1, 2,… , k} : if i = j , then for all vertices 
u, v ∈ V(C� ,i) ( = V(C� ,j) ), we have: �⃗dGk,𝛾

(u, v) ≤ 𝛾 ; otherwise 
(  i ≠ j  ) ,  fo r  a l l  ve r t i ce s  u ∈ V(C� ,i) − {z} and 
v ∈ V(C� ,j) − {z} , and with u′ and v′ denoting the (unique) 
vertices of V(C� ,i) − {z} and V(C� ,j) − {z} , respectively, 
which are adjacent from and to, respectively, the vertex z, 
we have: �⃗dGk,𝛾

(u, v) ≤ �⃗dGk,𝛾
(u�, v�) = 𝛾 + 𝛾 = 2𝛾 . Figure 10b 

illustrates a diametrical pair of vertices in Gk,� . The three 
graph-parameters satisfy that:

  ◻

Conclusion

Distributed function computation has a wide spectrum of major 
applications in distributed systems. There is a natural need 
to understand and approximate, if possible, lower and upper 
bounds on the number of time-steps for some or all vertices 
to receive (initial) vertex-values of all vertices of the network-
graph, regardless of the underlying protocol or algorithmics.

The number of time-steps for a vertex u of a network-
graph G to collect values/information from all the vertices in 
� ∗
G,in

(u) is lower-bounded by the in-eccentricity of u, eG,in(u) , 
in G. In accordance with the above-stated min-max distrib-
uted framework, we have proved that eG,in(u) is the minimum 
of the maximum tree-depth of a directed forest among all 
possible directed forests that are vertex-decomposition of 
� ∗
G,in

(u) − {u} and rooted in (as subset of) �G,in(u).
However, it is not necessary to compute eG,in(u) , directly 

or indirectly, through an underlying optimal directed forest 
whose maximum tree-depth yields eG,in(u) . Instead, with a 
given/fixed topology of a directed forest (described in above 
fashion) underlying a distributed iteration scheme, we can 
obtain a stronger lower bound with a distributed computa-
tion of the maximum depth Dmax among all the directed trees 
in the forest, and note that:

|V(G1,� )| = k� + 1 and |E(G1,� )| = k(� + 1).

dia(G) = 2� =
2(|V(G)| − 1)

|E(G)| − |V(G)| + 1
.

number of time-steps for vertex u to access values or

information from all vertices in the given directed forest

≥ 1 + Dmax ≥ eG,in(u).

We also address lower bounds on vertex-eccentricity and 
its maximum version, graph-diameter, in terms of common 
graph-parameters of the underlying graph in a graph-theo-
retic framework:

1. For a digraph G and a vertex u ∈ V(G) , we have shown a 
lower bound on eG,in(u) in terms of the graph-order and 
maximum in-degree of G, and

2. For a strongly connected digraph G, we have proved a 
lower bound on dia(G) in terms of the graph-order and 
-size of G, and have demonstrated the optimality of the 
diameter-bound for a family of (explicitly constructed) 
strongly connected digraphs.

In addition to the probabilistic upper-bound result on the num-
ber of time-steps for (general) distributed function computa-
tion via linear iterative schemes with random weight-matrix, 
Sundaram and Hadjicostis [11, 12] employ observability 
theory of linear systems to study the linear-functional case 
for distributed computation (of linear functions), and achieve 
an upper bound via the minimal polynomial of the underlying 
weight-matrix.

Toulouse and Minh [15] study the linear functional case 
with prescribed time-invariant network-topology over random 
weight-matrices, and obtain various empirical upper-bound 
results.

In accordance with an information-theoretic framework, Xu 
and Raginsky [18, 19] study the fundamental time-step limits 
of distributed function computation in a constrained proba-
bilistic setting. The lower- and upper-bound results are based 
on tradeoffs between: (1) the minimal amount of information 
necessarily extracted about the function value by any accuracy- 
and confidence-constrained algorithm, and (2) the maximal 
amount of information about the function value obtained by 
any algorithm within specified time-step and communication 
bounds. The lower-bound analysis indicates the dependence 
of computation time-steps on the diameter of the underlying 
network-graph, while the upper-bound one relies on cutset-
capacity arguments.

In addition, there have been several other recent theoreti-
cal developments in distributed computation and optimiza-
tion. Olshevsky and Tsitsiklis [10] prove lower bounds on the 
worst-case convergence time for various classes of linear, time-
invariant (in network-topology), distributed consensus meth-
ods. Kuhn, Moscibroda, and Wattenhofer [8] study lower and 
upper bounds on local/distributed computability and approxi-
mability (amount of local information, approximation ratio, 
communication round) for a large class of optimization prob-
lems: minimum vertex cover, minimum (connected) dominat-
ing set, maximum matching, maximal independent set, and 
maximal matching.
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