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Abstract—In this research, a new 3-DOF force feedback 

system featuring a spherical arm mechanism and three MR 

brakes is proposed. One rotary MR brake is integrated in 

the waist joint to reflect the horizontal tangent force, 

another rotary MR brake integrated in the shoulder joint to 

reflect the elevation tangent force while a linear MR brake 

is integrated in the sliding joint of the arm to reflect the 

radial force (approach force).  With this configuration, a 3-

DOF desired force acting on the operator at the end-effector 

of the arm can be archived by independently controlling the 

current applied to the coils of the MR brakes. After the 

introduction, configuration of the proposed force feedback 

system is presented. After that, design and simulation of the 

MR brakes for the systems are conducted. A prototype of 

the force feedback system is then manufactured for 

experiment and some experimental results are obtained and 

presented with discussion.  

 

Index Terms—MR fluid, spherical arm, force feedback 

system, haptic system, rotary MR brake, linear MR brake 

 

I. INTRODUCTION 

In recent years, a variety of researches on development 

and application of force feedback techniques have been 

conducted. The force feedback techniques cover a wide 

range of application including medical engineering, 

aerospace technologies, military applications, computer 

games and virtual reality devices such as virtual 

rehabilitation [1-2].  There have been several approaches 

to build a haptic system such as DC motors [3-5], 

electromagnetic actuators [6-7], pneumatic actuators [8-

9], shape memory alloy [10], dielectric elastomeric 

actuators [11-12], eccentric rotating mass motors [13-15], 

etc.  Recently, there have been many researches on haptic 

system featuring magneto-rheological fluid (MRF) [16-

18], which all showed that MRF is a good candidate for 

haptic applications. Recently, Nguyen et al. [19] have 

developed a 3DOF haptic manipulator system featuring 

MR brakes. In that research, a haptic telemanipulator 

system consists of a slave manipulator which is a 

commercial industrial articulated manipulator and a 

haptic master manipulator, which has similar kinematic 

chain with the mater, featuring three rotary MR brakes 

                                                           
Manuscript received July 1, 2018; revised August 21, 2019. 

located at the joints to generate a desired force at the 

operator. The required torque at the joints of the mater 

was calculated from the desired force based on static 

modeling of the manipulator and a PID controller was 

used for each brake to achieve the required torques. 

Because of inaccuracy in using static modeling, the 

calculated torques are not the exact required values which 

result in the inaccuracy of the feedback force. In order to 

improve the force feedback accuracy, recently Nguyen et 

al [20] have conducted some modifications, in which the 

required torques of the MR brakes are estimated from 

measured armature current of the corresponding motors 

of the slave and the advanced results are validated by 

experimental works. An implicit disadvantage of force 

feedback system using articulated manipulator 

mechanism is that the required torques have to be 

determined from coupled equations which results in 

implicit values of the required torques. 

In order to solve the implicit torque calculation of the 

articulated manipulator based force feedback, in this 

research a force feedback system based on a spherical 

arm mechanism is proposed. In order to reflect a required 

force to the operator, two rotary MR brakes and a linear 

MR brake are employed. With this configuration, a 3-

DOF desired force acting on the operator at the end-

effector of the arm can be archived by independently 

controlling the current applied to the coils of the MR 

brakes. 

II. HAPTIC TELEMANIPULATOR SYSTEM  

Fig. 1 shows the configuration of the proposed 3-DOF 

force feedback system. As shown in the figure, the 

system consists of a spherical arm mechanism with three 

joints: the waist revolute joint, the shoulder revolute joint 

and the arm prismatic joint. On the shaft of the waist joint, 

a rotary MR brake is attached to reflect a desired 

horizontal tangent force. The housing of the brake is 

fixed to the frame (base) of the spherical arm while the 

brake shaft is connected to the joint shaft. On the other 

end of the brake shaft, an encoder is attached to measure 

angular position of the body link (azimuth angle). On the 

body link, the shoulder joint is installed. On the shaft of 

the shoulder joint, another rotary MR brake is installed to 

reflect a desired elevation tangent force. The housing of 
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the brake is fixed to the body link while the brake shaft is 

connected to the shaft of the shoulder link. The other end 

of the brake shaft is connected with an encoder to 

measure angular position of the arm link (elevation angle). 

The linear MR brake is installed on the shoulder link 

which is attached to the shaft of the shoulder joint. The 

housing of the linear MR brake is fixed inside the hole on 

the shoulder link while it shaft can move back and forth 

as a sliding arm. At the end of the shaft, a 3-DOF force is 

attached to measure the reflected force acting on the 

operator. A linear encoder is employed to measure 

position of the sliding arm (radius).  

 

Figure 1.  Configuration of the 3-DOF spherical force feedback system 

Fig. 2 shows significant dimensions of the force 

feedback system which are selected based on its required 

working space and manufacturing convenience. It is 

noted that the maximum reflected force in each direction 

(horizontal tangent force, elevation tangent force, 

approach force) is set by 40N considering the 

conformable operational effort of the operator. From 

these required forces, it can be determined that the 

maximum required torque of the rotary MR brakes is 

8Nm (=200mm*40N) while the maximum required force 

of the linear MRB is obviously 40N. 

 

Figure 2.  Significant dimensions of the force feedback system 

III. MR BRAKES FOR THE FORCE FEEDBACK SYSTEM 

A. The Rotary MR Brakes 

 

Figure 3.  Configuration of the rotary MR brake 

In this study, a new configuration of MR brake with 

tooth-shaped rotor shown in Fig. 3, is used for the rotary 

MR brakes. As shown in the figure, the MR brake has a 

disc (rotor) made of magnetic steel, fixed to the flange of 

the shaft made of nonmagnetic steel. The disc is placed 

inside a stationary envelope (housing) made of magnetic 

steel. The gap between the disc and the housing is filled 

up with magnetorheological fluid (MRF). In order to 

create a magnetic field with magnetic flux going across 

the MRF gap, a magnetic coil is placed on each side of 

the brake housing. Two counter currents are applied to 

the coils to generate a mutual magnetic field in order to 

produce the braking force. It is noted that the disc and the 

housing have tooth-shaped counterpart faces that allow a 

large contact surface between the MRF and the disc, and 

also a higher magnetic flux density across the MRF gap; 

thereby, the induced braking torque is expected to 

increase notably.  

 

Figure 4.  Finite element model for magnetic analysis of the MR brake. 

An optimal design of the MR brake is conducted based 

on finite element analysis of the magnetic field of the MR 
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brake. The finite element model using 2D-axisymmetric 

couple element (PLANE 13) of ANSYS software for 

magnetic analysis of the MR brake is shown in Fig. 4. In 

the optimal design, objective function is the mass of the 

MR brake while the maximum induced braking torque is 

constrained to be greater than 10Nm (the required is 8Nm). 

The MRF used in this research is the commercial one, 

MRF132-DG, made by Lord Corporation. The copper 

coil wires are sized as 24-gage (diameter = 0.511mm). 

Table I show the optimal results of the MR brake. 

TABLE I.  OPTIMAL SOLUTION OF THE ROTARY MR BRAKE 

Design variable (mm) 
Optimized performance 

characteristics 

Size of coils: width wc=4.6; height: 

hc=19.4; no. coil turns =283 
Housing: Outer radius R=41.4; 

Overall length L=29.0, thickness 
th=3.25; thin wall: 1mm 

Disc: Inner radius: Ri=15; Outer 

radius: Rd=38.7, Shaft radius=6.0 
Tooth profile: Total depth=2.5, 

Top thickness: 2.0, bottom 
thickness: 4.15 

MRF gap: 0.6  

 

Maximum braking torque: 10Nm 
Mass: 1.2kg 

Off-state torque: 0.1Nm 
Power consumption: 16.5W 

Coil radius: 3.6 

B. The Linear MR Brake 

In this study, the configuration of  two-coil linear MR 

brake without using non magnetic bobbin developed by 

Song et al [21] shown in Fig. 5, is used for the linear MR 

brake. In the same way for optimal design of the rotary 

MR brakes, the optimal design of the linear MR brake is 

conducted based on finite element model shown in Fig. 6. 

The optimal results are shown in Table II, from which 

detailed design of the MR brake is conducted and shown 

in Fig. 9. 

 

Figure 5.  Configuration of the linear MR brake. 

 

Figure 6.  Finite element model for magnetic analysis of linear brake 

TABLE II.  OPTIMAL SOLUTION OF THE ROTARY MR BRAKE 

Design variable (mm) 
Optimized performance 

characteristics 

Size of coils: width wc=1.5; height: 
hc=11.3; the chamfer: ch1=3.7, 

ch2=5.0, no. coil turns =386 
Housing: Outer radius R=21.8; 

Overall length L=39.2; thin wall: 

0.5mm 
Shaft: Shaft radius=5.0. 

MRF gap: 0.6  

Maximum braking force: 40Nm 

Mass: 0.46kg 
Off-state torque: 6.0N 

Power consumption: 11.5W 

Coil radius: 2.5 

From the optimal design, the MR brakes are 

manufactured and installed on the spherical force 

feedback system which is shown in Fig. 10.  In order to 

evaluate braking torque of the rotary MR brakes and 

braking force of the linear MR brake, experimental works 

are conducted directly on the prototype shown in Fig. 7. 

Fig. 8 shows the measured braking torque of the rotary 

MR brake at the waist joint. It is noted that, in the 

experiment, the horizontal tangent force at the end of the 

arm is measured by the force sensor and the arm is fixed 

in horizontal direction with the arm length of 100mm. 

Thus, the braking torque of the MR brake is calculated by 

the product of the measured force and the arm length 

(100mm). During the experiment, the arm is rotated about 

the waist joint and the average value of the force at 

different value of the applied current is recorded. In the 

same manner of the MR brake at the waist joint, the 

braking torque of the MR brake at the shoulder joint is 

experimentally evaluated and the results are shown in Fig. 

9. It is noted that in this case the arm is rotated about the 

shoulder joint axis during the experiment. Fig. 10 shows 

the braking force of the linear MR brake at the function 

of the applied current. In this case, the arm is fixed in 

horizontal direction and the shaft of the MR brake is 

moved back and forth.  

 
Figure 7.  The 3-DOF spherical force feedback prototype 
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Figure 8.   Braking torque of the waist MR brake vs applied current 
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Figure 9.   Braking torque of the shoulder MR brake vs applied current 

0.0 0.5 1.0 1.5 2.0 2.5
0

10

20

30

40

50

60

 

 

B
ra

k
in

g
 F

o
rc

e
 (

N
)

Applied Current (A)

 Simulated

 Measured

 

Figure 10.   Braking force of the linear MR brake vs applied current 

IV. CONTROL DESIGN FOR THE FORCE FEEDBACK 

SYSTEM 

In this section, an open loop controller is design to 

reflect a desired force to the operator. Fig. 11 shows the 

block diagram of the control system for the horizontal 

and elevation tangent forces while that for the radial force 

is shown in Fig. 12. As shown in Fig. 11, from the 

information of the encoders, position of end-effector of 

the arm is calculated. The braking torque of the waist MR 

brake is then calculated by Eq. (1) while that of the 

shoulder brake is calculated by Eq. (2) 

 cosw hT F r   (1) 

 
sh eT F r  (2) 

In the above, Fh
 
is the desire horizontal tangent force, 

Fe
 
is the desire elevation tangent force, r

 
is the arm radius 

and 
  

is the elevation angle. 
 

In order to archive a braking torque equal to the 

calculated one, the applied current to the coils of the MR 

brakes is determined from the experimental results shown 

in Fig.
 
8

 
and 9 using cure fitting method. 

 

For the radial force, as shown in Fig.
 
12, from the 

desired radial force, the applied current to the coils of the 

linear
 

MR brake is determined from the experimental 

results shown in Fig.
 
10 using cure fitting method. 

 

 

Figure 11. 
 

Block diagram
 

of control system for tangent force
 

 

Figure 12. 

 

Block diagram of control system for radius force

 

V.

 

RESULTS AND DISCUSSION

 

A.

 

Experimental Setup

 

Fig.

 

13

 

shows the experimental set up for experimental 

work. As shown from the figure, the

 

PCI card

 

NI-6289 

(National Instruments) is used for interaction between the 

manipulator system and the computer. A 3-DOF force 

sensor (OptoForce) is attached

 

at the end-effector to 

measure the reflected force acting on the operator.

 

When 

operator moves the master arm, angular positions are 

measured by the rotary encoders and the radial position is 

measured by the linear encoders. The information from 

the encoders is sent to the computer through the PCI card. 

From the encoders’ information, the computer computes

 

values of the applied currents for the MRBs. These 

currents are then sent to the coils of the MR brake 

through

 

the

 

PCI card and an amplifier.
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Figure 13.  Braking torque of the optimized MRB vs applied current 

B. Experimental Reults  

Fig. 14, 15 and 16 show experimental results of force 

feedback system. In the experiment, the force feedback 

arm is located in an arbitrary position; a sinusoidal 

desired feedback force is set for each component of the 

feedback force (the horizontal tangent, the elevation 

tangent and the radial force). During the experiment, the 

operator holds the end-effector and moves it in an 

arbitrary trajectory in the working space. It is observed 

from Fig. 14 that the actual feedback horizontal force 

well agrees with the desired one. However, the actual 

feedback force can not be smaller than 1.5N. It is obvious 

because the uncontrollable torque (the off-state torque of 

the MR brake). From Fig. 15, it is also observed that the 

actual feedback elevation force well agrees with the 

desired one. In this case, the minimum achievable force is 

1.8N.  From Fig. 16, it is observed that the actual 

feedback radial force quite well agree with the desired 

one. However, In this case, the minimum achievable 

force is quite high, around 6N, which is almost equal to 

the off-state force of the linear MR brake.  The above 

results show that the proposed 3-DOF force feedback 

system can be used to reflect an arbitrary desired force to 

an operator. 
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Figure 14.  Experimental  results of horizontal force reflection 
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Figure 15.  Experimental  results of elevation force reflection 
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Figure 16.  Experimental  results of radial force reflection 

VI. CONCLUSIONS 

In this research, a new 3-DOF force feedback system 

featuring a spherical arm mechanism and three MR 

brakes (two rotary MR brakes and one linear MR brake) 

has been proposed. With this configuration, a 3-DOF 

desired force acting on the operator at the end-effector of 

the arm can be archived by independently controlling the 

current applied to the coils of the MR brakes. After the 

introduction, configuration of the proposed force 

feedback system was presented. After that, design and 

simulation of the MR brakes for the systems were 

conducted. For the rotary MR brake, a configuration of 

MR brake with tooth-shaped rotor was employed. For the 

linear MR brake, a MR brake without using nonmagnetic 

bobbin was used. In order to reflect a desired force, an 

open loop controller based on experimental performance 

of the MR brakes was used in this study. A prototype of 

the force feedback system was then manufactured for 

experiment. Experimental results show that a desired 

feedback force can be well archived by the force 

feedback proposed system. However, due to the off-state 

torque and force of the MR brake, the system can not 

reflect small force to the operator, which is 1.5N for the 

horizontal fore, 1.8N for the elevation force and 6N for 

radial force). 
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