Protecting Consensus Seeking NIDS Modules against Multiple
Attackers

Michel Toulouse
Vietnamese-German University
Binh Duong New City, Vietnam

michel.toulouse@vgu.edu.vn

ABSTRACT

This work concerns distributed consensus algorithms and appli-
cation to a network intrusion detection system (NIDS) [21]. We
consider the problem of defending the system against multiple
data falsification attacks (Byzantine attacks), a vulnerability of
distributed peer-to-peer consensus algorithms that has not been
widely addressed in its practicality. We consider both naive (inde-
pendent) and colluding attackers. We test three defense strategy
implementations, two classified as outlier detection methods and
one reputation-based method. We have narrowed our attention to
outlier and reputation-based methods because they are relatively
light computationally speaking. We have left out control theoretic
methods which are likely the most effective methods, however their
computational cost increase rapidly with the number of attackers.
We compare the efficiency of these three implementations for their
computational cost, detection performance, convergence behav-
ior and possible impacts on the intrusion detection accuracy of
the NIDS. Tests are performed based on simulations of distributed
denial of service attacks using the KSL-KDD data set.

CCS CONCEPTS

« Security and privacy — Intrusion detection systems; Mobile
and wireless security; Denial-of-service attacks;

KEYWORDS

Network Intrusion Detection System; Anomaly-based; Outlier De-
tection; Reputation-based detection; Average-Consensus Algorithm;

ACM Reference Format:

Michel Toulouse and Phuong Khanh Nguyen. 2017. Protecting Consensus
Seeking NIDS Modules against Multiple Attackers. In SoICT ’17: Eighth
International Symposium on Information and Communication Technology,
December 7-8, 2017, Nha Trang City, Viet Nam. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3155133.3155185

1 INTRODUCTION

Consensus seeking is a process in which humans reach decision
unanimity from an initially divergent set of opinions. The state of
unanimity is not achieved by delegating the decision to a single

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoICT ’17, December 7-8, 2017, Nha Trang City, Viet Nam

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5328-1/17/12...$15.00
https://doi.org/10.1145/3155133.3155185

226

Phuong Khanh Nguyen
Hanoi university of Science and Technology
Hanoi, Vietnam
phuongnk@soict.hust.edu.vn

entity, rather it is a process of local opinion exchanges among pairs
or overlapping subgroups of humans. The automation of consensus
is now understood as a form of machine learning, but the math-
ematical formalization of this process started much earlier in the
50’s as stochastic models, though the original formalization is best
remembered today for the 1974 statistical model in "Reaching a con-
sensus" by Morris H. DeGroot [4] (see historical references therein).
This model has soon inspired algorithms for distributed compu-
tation over networks such as classifying multi-source data over
sensor networks [1], distributed optimization [23], and as a model
of flocking behaviors by physicists Vicsek et al. [24]. More recently
we find consensus algorithms in a wide range of distributed appli-
cations in which data are collected or stored redundantly and then
fused such as in sensor networks, distributed robotics, cognitive
radio networks, distributed agent systems, duplicated databases,
reconnaissance systems, aircraft altimeters, autonomous vehicles
formation, air traffic control, etc. See [14] for an extensive survey on
the background, applications and key mathematical issues related
to linear consensus algorithms.

Consensus algorithms specify how data are exchanged between
a node and its neighbors in the network and how exchanged data
are processed by each node. Like in human consensus, this is an
iterative process. First nodes in the same neighborhood agree on
a common opinion based on their local data. Nodes repeatedly
exchange and process agreed information among neighbors until
the initial state from each node has diffused across the whole net-
work, causing nodes to converge on a consensus value that reflects
the initial state of all nodes in the network. A key issue therefore
in the design of a consensus algorithm is the proof that the iter-
ative process converges to the desired consensus. However this
issue is largely settled from the wide body of mathematical results
on convergence conditions that has been published (see [25] and
references therein).

Consensus algorithms can also be found in critical infrastructure
distributed applications (IoT [11], financial markets [22]). The next
important issue to be addressed is resilience of convergence condi-
tions under faulty equipments (network nodes or links failures) and
more recently malicious actors. What types of attack vulnerabilities
consensus algorithms arbor and what are the necessary conditions
to design robust consensus algorithms subjected to adversarial en-
vironments. The first works credited for addressing these issues
are Pease et all [17] and Lamport et all [10] in what has since been
known as "the Byzantine agreement problem", and later on the work
of N. A. Lynch [13]. The Byzantine agreement problem addresses
consensus convergence issues when some of the network nodes
have been captured or infiltrated by malicious actors. Contrary
to faulty nodes, Byzantine nodes appear to work normally while

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

in fact they can be sending falsified data or disrupting consensus
computation, or both. Byzantine nodes could be extremely difficult
to detect, honest nodes believe they receive genuine information,
but then fail to agree or reach a consensus induces by the Byzantine
attackers.

Byzantine attacks are not only more difficult to detect than faulty
nodes, the likelihood of a system been subjected to multiple attack-
ers is much greater than multiple nodes faulting. Defense strategies
against Byzantine attacks do not usually differentiate between sin-
gle and multiple attackers. Most of the proposed defense methods
are assumed to work for multiple attackers but in practice are tested
for a single attacker [5, 9, 12, 15, 16, 18, 26, 28, 29]. Expectedly, gen-
eralized frameworks do not differentiate between single or multiple
attackers. The formulation of the Byzantine General Problem in
[10] also assume multiplicity of the traitors, providing bounds on
the maximum number of attackers beyond which the Byzantine
agreement problem has no solution. But is it so in the practical-
ity, it is not clear whether the proposed defense strategies against
Byzantine attacks are as efficient when multiple nodes are compro-
mised. For example, several defense strategies are based on outliers
detection, but detection of outliers works as long as the outliers are
a small minority of the nodes. There is also the computational cost
of detecting several attackers, some methods, such as control theo-
retical approaches [15, 16, 18], are clearly more expensive to run in
the context of multiple attackers, and may not be implementable in
network environments such as low power wireless networks.

It is not clear whether this question can be addressed inside a
formal framework. Consequently, this study addresses the issue
of multiple attacks in a more empirical setting. We test implemen-
tations of defense strategies suitable to detect multiple attackers.
More specifically, we have adapted the outlier methods in [5, 12]
and reputation-based methods in [28] to the consensus-based NIDS
described in [21]. We have left out for now control theoretic meth-
ods [15, 16, 18] which are very effective methods when dealing
with a single attacker [19, 20], but their computational cost in-
creases quite rapidly with the number of attackers. We focus on
defense strategies that are relatively light from a computational
standpoint. We analyze these methods in their capacity to detect
multiple attacks as well as other criteria.

This paper is organized as follow. Section 2 briefly recalls the
main features and the consensus algorithm of the system in [21].
Section 3 proposes an attack model, define issues related to indepen-
dent and colluding attacks and finally describe the implementation
of three detection strategies applicable to multiple attacks’ sce-
narios. Section 4 report our experimental results and Section 5
concludes.

2 AVERAGE CONSENSUS AND NIDS

The network intrusion detection system proposed in [21] is a fully
distributed NIDS which combines anomaly-based NIDS modules
and an asymptotic average consensus algorithm. Assume we have a
network as depicted in Figure 1 where red (sensor) nodes are NIDS
modules. Each module observes the local traffic in sub-networks A,
B, C and D using sensor capabilities. Each module is further capable
of analyzing the observed traffic, and returns distributions about
the likelihood that the observed local traffic is benign or anomalous.

227

Michel Toulouse and Phuong Khanh Nguyen

Sensoﬁ'ﬁ///
\
\
\
\
\
Sensor 2 \
\ \ Sensorlrl“'"""‘
2 Nl o
D /
° @°

Figure 1: Network Intrusion Detection System.

Assume similar distributions have to be computed for the traffic
in the whole network. One way is to send the local likelihood
distributions to a designated module which computes their joint
likelihoods and finally distributed the results downward to each
other modules. In [21], this computation is performed distributively,
each module running a local average procedure while exchanging
local likelihoods with its neighbors.

2.1 Consensus algorithm

In Figure 1, together with the NIDS modules and the monitored
network, a dedicated communication network composed of links
{1,2},{1,3}, {3,4} and {2, 4} supports information sharing among
NIDS modules. The dedicated links and the NIDS modules define an
NIDS network. Mathematically, an NIDS network can be abstracted
as a weighted adjacency matrix W, where W;; = 0 when modules
i and j are not adjacent in the network and W;; # 0 is a weight
associated to the link between i and j (in human consensus, Wj;
represents the degree of trust i has for the opinion of j and vice-
versa). To compute distributively network wide values, each module
execute the following consensus loop:

xi(t +1) = Wiixi () + Z Wijx;(t),
JeN;

where x;(t) is the consensus value of module i at iteration ¢ of its
consensus loop. At t = 0, x;(t) is initialized with some value com-
puted by module i (see equation (3)). The set of neighbors to module
i is denoted by Nj, W is the weight associated with edge (i, j). The
consensus algorithm in [21] is an asymptotic average consensus
algorithm, i.e. the consensus value of each module converges to
% ", xi(0) as t — co. Convergence conditions are the following:
1- the graph corresponding to Wis strongly connected; 2- the ma-
trix W is stochastic, the weight of each row in W sum up to 1. The
following weight matrix satisfies these two conditions:

(1)

1
m 1fl¢]and]€N,-
1= 2ken, Wi ifi=]

0 ifi#jandj ¢ N;
where d; = |[N;|. It is the core weight matrix used in this paper.

Wij = (2

2.2 Consensus-based NIDS

The consensus-based algorithm in [21] loops through four phases:
1- recording the feature values associated to local network traffic; 2-
traffic analysis phase; 3- consensus phase where modules execute

Protecting Consensus Seeking NIDS Modules against Multiple Attackers

the consensus loop in equation (1); 4- decision phase, where NIDS
modules output a decision as to whether the network wide traffic
is normal or anomalous and potentially take automatic mitigation
actions against a perceived treat. Phases 1 and 2 process local traffic
while phases 3 and 4 evaluate the network wide traffic activities.

2.2.1 Traffic analysis phase. Each NIDS module is an anomaly-
based intrusion detection system, a naive Bayesian classifier com-
putes the probability the observed feature values in phase 1 corre-
spond to anomalous or normal traffic activities. Let m be the number
feature values recorded in phase 1, o; the value of feature j, h, and
hy respectively the hypotheses that the network traffic is anoma-
lous (h,) and normal (hy,). P(oj|h) expresses the likelihood of the
occurrence of value o; under each hypothesis (given the historic
anomalous h, or normal hj occurrences). Assuming conditional in-
dependence of the m features, the joint likelihood P(O;|h) of NIDS
module i is the product of the feature’s likelihoods:

P(Oilh) = [| Pojlh). 3)
j=1

Module i returns P(Oj|h).

2.2.2 Consensus phase. The consensus phase corresponds to the
parallel execution of the n consensus loops, where n is the number
of NIDS modules. The consensus phase lasts from the moment
the first module initiates its consensus loop until the last module
exits from its consensus loop. Mathematically, a consensus phase
is expressed as

x(t+1) = Wx(t), t=0,1,... ()

where x(t) is a vector of n entries, x;(t) is the consensus value of
module i at iteration t of its consensus loop. The consensus phase
runs in lock step, iteration ¢ + 1 starts only once each module i has
computed x;(t).

The consensus loop of a module i is constrained by the following
stopping condition |x;(t+1)—x;(t)| < €,i.e. the consensus loop stops
once the difference between the consensus value at iteration t and
iteration ¢ + 1 is smaller than a pre-defined threshold e. If the weight
matrix satisfies the convergence conditions, all modules eventually
meet this stopping condition, though for different values of . We are
interested to count the number of iterations of a consensus phase
as the expression of how fast modules converge to an acceptable
approximation of % 1 xi(0). Let t; denotes the last iteration
of consensus loop i (i.e. the iteration where module i stops). The
number of iterations of a consensus phase is ¢ = max{t;},i = 1..n.
This value is a measure of the convergence speed.

2.2.3 Decision phase. Decisions are computed independently
by each module. At the end of a consensus phase, each module
has approximated the network wide joint likelihood P(Olh) =

', P(O;|h) through the distributed computation of the sum of
the local likelihoods. The Bayes rule is applied to compute for mod-
ule i an approximation ~ P(h,4|O); of the probabilities P(hy|O)
that the observed traffic is anomalous, similarly an approximation
~ P(hp|O); of the probabilities P(h,|0O) is computed that the ob-
served traffic is normal. The decision criterion to raise an alert is
% > 7 for some system pre-defined threshold value 7. This
ratio is never completely the same from one module to another,

228

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

however, if there is consensus, all modules will output the same
decision.

3 DEFENSE STRATEGIES AGAINST
MULTIPLE ATTACKERS

In general, attacks on a defense system like an NIDS aim at in-
capacitating the detection capabilities of the system. This can be
achieved through external attacks disabling the system in part or
completely, or internally, inducing the system to report no attack
when intrusions take place, reporting attacks when none take place
(false positives) or causing honest nodes to fail reaching consensus.
Insider attacks origin from attackers capturing one or several NIDS
modules. Attacks are executed by interfering with the consensus
phase protocol. These attacks are difficult to detect as the system
appear to function normally. According to [8, 15], insider attacks
on the consensus phase can take the following forms:

(1) Data falsification attacks: The consensus loop is initialized
with falsified data.
(2) Consensus disruption:

(a) compromised nodes ignore the consensus value computed
at each iteration and keeps transmitting the same constant
c,soxi(t+1)=g¢;

(b) compromised nodes send to their neighbors falsified con-
sensus values [15]. This last form of attacks can be mod-
eled as in the following equation:

xilt+1) = Wygxi(t) + D Wijxj(t) + ui().
JEN;

®)

In this paper, we focus on insider attacks of type 2.b (equation
(5)). Compromised modules disturb the consensus loop by adding
a value u;(t) to the consensus value x;(t + 1). This form of attack
aims to alter module’s decisions in phase 4 of the consensus-based
NIDS. In one scenario, attackers may increase the weight of the
hypothesis hy in the likelihood distribution at each consensus it-

eration of compromised modules. NIDS modules may converge
*P(ha|0);
~P(hn[0);
no attack decisions when one is taking place, or causing honest
modules to deliver different decisions.

to a network wide distribution where < 7, outputting

3.1

Attacks executed by multiple attackers take essentially two forms,
naive (independent) and colluded attacks [2]. Naive attacks occur
when several modules are compromised by different actors. We
model these attacks by setting u;(t) and u;(t) with different values if
iand j are compromised modules and i # j. Undetected, such attacks
are likely to prevent the consensus phase from converging or cause
it to converge very slowly, but unlikely to be successful in falsifying
module’s decisions. In colluding attacks, we have u;(t) = u;j(t) > 0
if u;(t) and uj(t) are compromised modules by colluding attackers,
i # j. The value injected by u;(t) and u;(t) is consistent with altering
modules’ decisions.

Multiple attackers

3.2 Detecting multiple attackers

The bulk of recent defense methods against different forms of data
falsifications, and consensus disruption in particular, origin from
the wireless network community, particularly sensor and ad hoc

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

networks (see [6, 7, 27] and references therein). As these systems
are physically decentralized, network intrusion detection systems
are susceptible to insider attacks from existing network nodes be-
coming compromised or from nodes joining the network without
sufficient credentials.

Among the defense strategies proposed in the recent literature,
we focus primary on methods designed to handle multiple attacks
that can be implemented in a fully distributed manner. We first con-
sider a class of outlier defense strategies that specifically address
data falsification and consensus disruption attacks as modeled in
equation (5) (see [12] and references therein). Second, we propose
a defense strategy inspired from attack detections in randomized
consensus algorithms [3] (one consensus phase iteration in ran-
domized consensus updates the state of only two nodes as follow:
xi(t+1) = xj(t +1) = w) Randomized consensus algo-
rithms rely on observing the consensus phase over several consen-
sus iterations in order to detect anomalies. The strategy proposed
in [3] is designed to handle multiple attackers, we extend it to the
deterministic consensus algorithm in Section 2.1. Last, we consider
detection of multiple attackers following reputation-based meth-
ods. These methods are widely use to prevent dysfunctionalities in
wireless networks caused by malicious, faulty or selfish nodes. We
analyze the reputation-based method in [28] which is specifically
designed to handle consensus loop disruptions.

3.2.1 Method 1. Based on [12], this method is typical of a class of
threshold based methods that have been applied to detect intrusion
in consensus-based cooperative spectrum sensing applications. It
is an outlier based method where a neighbor j € Nj; is an outlier if
the consensus value x;(t) of node j at iteration ¢ deviates too much
from x;(t).

Neighbors j € Nj are classified into two sets: neighbors j € NiF if
the deviation |x;(t)—x;(t)| > A;(t) for some threshold A;(t),j € NiT
if the deviation |x;j(¢) - x;(t)| < A;(t). The rational for this approach
is the following. The value x;(t) is the local average sum of x;(t — 1)
and xj(t — 1) for j € N;j. As all nodes converge to % > xi(0),
the difference |x;(t) — x;(t — 1)| is expected to become increasingly
small. Therefore x;(t) been closed to x;(t — 1) is also closed to
xi(t) unless external inputs have been injected into x;(t). Values
of neighbors with large deviations are suspected as not genuine.
Neighbors in NiF are considered as potentially compromised, to
avoid that consensus be falsified, the contribution of x;, j € NiF to
the update of x; is reduced by a factor a as in the following update
equation:

xi(t+1) = Waxi() +) Wyxj(t)+). —xJ(t) ©)

JENT jeNF

Note that this update rule invalidates the second convergence con-
dition of average consensus (row i in W should sum up to 1). The
weight matrix in (2) is modified as follows:

ifi #jandje N;
ifi =j

1
1+max(d;,d;)
W;
1- X Wi- X (=&
keNT keNt
0 ifi #jandj ¢ N;

Wij = (7)

229

Michel Toulouse and Phuong Khanh Nguyen

Knowing the differences x;(t + 1) — x;(t) decrease as x;(t) con-
verges to % 27 xi(0), attackers could inject increasingly smaller
u;(t) into the consensus loop in order to avoid detection. In [12] a
rule is provided to compute the threshold value A; at iteration ¢:

Zjen; 1%t +1) = xi(t +1)|
Zjen; 1xj () = xi(2)]

This adaptive threshold rule avoids that attacks fall under the radar
of the detection system.

Ait+1) = Ai(t). 8)

3.2.2 Method 2. This second method is a variation on Method
1. Though the intuition is the same, this is a distant adaptation
of "detection through spatial differences" proposed in [5]. Here
detection is based on a sample of several consensus phase iterations
K(t) = t1,t2, ..., t; where t; € K(t) < t, for t the current iteration
of the consensus phase. The consensus iterations in K(¢) are applied
to compute the difference between x; and the true average sum of
its neighbors:

D %)l

JEN;

1
TN)

In order to properly interpret equation (9), we first note that if
all consensus loops have converged to a true consensus, x;(t) ~

xj(tVj #i= %Z?:I x;(0). Therefore, x;; = |x;(t;)— W
0.If the nodes have not converged yet, then x;(t) # x;(t) for at least
some j # i. The value x;; measures the difference between x;(t) and
the true average sum of its neighbors. If node j is compromised in
the sense of the attack model in equation (5), |x;(t) —x;(t)| > xj;, i.e.
the difference between x;(t) and x;(t) is greater than the difference
between x;(t) and the true average value of its neighbors, which
includes node j. This is used to detect outliers. A short discretion is
needed here. Remember x;(t) = Wiixi(t — 1) + X ey, Wijxj(t — 1)
as computed by the weight matrix W. If W satisfied the consensus
convergence conditions x;(t) — xj(t — 1) < 0, |x;(t) — x;(t — 1)| > 0.
ZjeNi xj(t)
INi|

. Because x;; is comparing values from two different

If nodes have not converged yet, we should have
ZjeN,- xj(-1)
INil
consensus iterations, we should expect a difference between x;(t)
and its neighbors due to the consensus step, though this is a minor

issue.
The sum of the differences between x;(t;) and x;(;), j € N; over
the sample space t; € K(t) is compared with Xj;:

Ji=) Ul = xit)D) > AXii
t1eK(t)

(10)

In equation (10), if J;; > AxXj;, the deviation of x; is greater than
1) _ Z_]EN xj()

node j seeks to steer away nodes in N; from thelr true average, it
is possibly a compromised node in the NIDS network.

As for Method 1, neighbors of node i are partitioned into two
sets. If neighbor j is classified as an outlier according to equation
(10) then j € NiF, otherwise j € NiT. The weights of nodes in NiF
are updated as in equation (6). Similarly, the entry ii of the weight
matrix is updated as in equation (7).

the average deviation | 3} ;e n, Wijxj(t — | Tt is as if

Protecting Consensus Seeking NIDS Modules against Multiple Attackers

3.2.3 Method 3. This is an adaptation of [28] to the consensus-
based NIDS in [21]. The method in [28] detects consensus loop
disruptions. This detection method assumes that module i can eaves-
drop on the communications of one-hop neighbors, so it is only
applicable in wireless networks.

Essentially, each node i computes redundantly the value xirj(t)
of its neighbors by eavesdropping on the transmissions received
by node j. The relevant transmissions received by j are x;(t — 1),
I € Nj. Therefore, for j € Nj

XL (6) = Wit — 1) + Z Wpx(t — 1)
LeN;

(11)

Next, xirj(t) is compared with x;(t), the value sent to node i by node
j € Ni: xi’j(t) — xj(t). Let g;j(t) be a variable that remembers the
number of iterations from 0 to ¢ where neighbor j has send a value
xj to node i that didn’t differ by too much from x],. Essentially,
gij(t) records the number of iterations where node j has reported
to node i a value that is believed to be a correct. The update rule of

each variable g;; is as follows:
P R ORIl
9 giit=1), (0 - x()] > 8(2)

The reputation of node j from the perspective of node i is computed
as follow:

(12)

ngij(t) (13)
nt
Here 7 is the "reputation coefficient” which is used to determine
how fast the reputation decreases.
The consensus weight matrix is updated to reduce the influence
of the nodes that have bad reputation.

repij(t) 1
Yjen; repij(t)” INi| +1
As for the outlier method 1, the weights of the weight matrix are

updated similarly as in equation (7) so that the sum of the values
in each row = 1.

rep;j(t) =

) (14)

Wij = min(

4 EXPERIMENTAL ANALYSIS

We have run simulations for 5 NIDS networks: two ring networks
and two 2-D torus networks respectively each of size 9 and 25
NIDS modules, and one Petersen graph (10 modules and 15 links). A
simulation consists for each module of a network to run 1000 times
the loop describes at the beginning of Section 2.2: reads the local
network traffic from an entry of the NSL-KDD data set, performs
an Bayesian analysis of the local traffic, executes consensus loop
during which one of the above three defense strategies is activated
to detect whether some neighbors are compromised, last output a
decision.

The consensus loop of each module i is implemented as follow.
Analysis of the local network traffic returns two values: P(O;|hg),
the likelihood that the observed traffic at module i is anomalous;
P(Oj|hy), the likelihood the observed traffic at module i is normal.
These values are used to initialize the consensus loop of module
i: xlA(O) = In(P(Oj|hq) and xlN(O) = In(P(Oj|hy), for i = 1..n. We
have observed that consensus loops are initialized with values in
the interval [-40,-175] as the values returned by Bayesian analysis

230

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

Figure 2: Torus 9 nodes.

are quite small. Each NIDS module i executes the following two
components of the consensus loop until |x§4(t +1) —x;“(t)| < eand
IxN(t+1)-xN@) < e

)+ 1) =W+ D Wyt +wie) (15)
JEN;

Nt +1) = WixN (1) + Z Wy () + ui(1). (16)
JEN;

Once all consensus loops have converged, the corresponding
consensus phase is completed, consequently each NIDS module
x(2)
x (1)

IN In(pa,) , L% In(pn;)
1n A / 1n N) and

i decides whether to raise an alert or not based on its ratio

(which approximates the actual ratio
some predefined alert value An7ps.

Tests in this paper are conducted with a slightly improved version
of [21]. In this new version, consensus phases converge more rapidly
and NIDS decisions are computed with a greater accuracy, closed
to 100%, compared to 94 ~ 95% in [21].

4.1 Attack implementations

Consensus disruptions from the attack model 2(b) are implemented
as follow. Colluding attackers target a single module by having
all the compromised modules to be neighbors of the same module.
At each consensus phase, a module i is selected randomly to be
the main victim of the colluding attack. The compromised neigh-
bors of the victim are selected randomly. Figure 2 pictures this
attack scenario where module 4 is the victim, surrounded by three
compromised modules, modules 1, 3 and 7. At each iteration t of
a consensus phase, each compromised module j € N; adds the
same value u;(t) = —30 to its consensus state x;(¢) and send its
falsified consensus value to module i. As each compromised mod-
ule send falsified consensus values to all its neighbors, colluding
attacks also disrupt the consensus loop of several other modules.
For example, in the attack scenario of Figure 2, module 0 is fed
with falsified consensus values from two compromised modules,
module 2 is attacked by compromised module 1, etc. All together,
a three modules colluding attack on a 9 modules Torus network
is quite a comprehensive attack. In non-colluding attacks, at each
consensus phase, k attackers are selected randomly among the n
modules of the NIDS network. Each attacker j assigns randomly to
uj(t) a value in the interval [-30, -40].

4.2 Parameter settings

This section describe briefly how parameters have been set. Our set-
tings are quite basic in some cases, for example the attack values are

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

large in comparison with the initial readings. The purpose of this
work is to compare different defense strategies on a same footing
to see how well they can detect and neutralize multiple attackers.
Some of the parameters would have been extremely difficult to
fine tune in this context. One difficulty is the wide fluctuations in
the initialization of the consensus loops (between -40 and -175 as
seen already), which could cause the defense methods to flag some
modules as compromised in the first few iterations of the consensus
loop. Proper handling of this issue will require extra implementa-
tions or non-uniform fine tunings of the current implementations
which is outside the scope of this work.

4.2.1 Attack settings. All attacks in our tests target the consen-
sus loop component described in equation (15). An attack consist
to assign u;.‘“(t) = —30 or whatever value selected in non-colluding

attacks. This attack makes xJA(t) smaller, it aims at inducing the
NIDS to report no attack when one occurs, reporting false negatives.
The attack value -30 is relatively large with respect to the input val-
ues submitted to consensus phases, it is closed to the largest input
values (-40). If not detected and neutralized, such attack definitely
could impact the accuracy of the NIDS.

4.2.2 Method 1. The main parameters of Method 1 are A; and a.
Ai is a threshold value that classifies the neighbors of module i in
two classes NiF (suspected of been attackers) and NiT (believed to
be honest). The tests we reported are based on a single and constant
value A = 30. We have set A to be large such that fluctuations in
initial readings are not confused to often for attacks. Our test do
not make use of the adaptive update of equation (8).

The second parameter a is the factor by which an entry in the
weight matrix is reduced. An entry is reduced each time the corre-
sponding module is identified as compromised by the method. We
have set a = 3.5.

4.2.3 Method 2. We have two parameters, the size of the set K
and the threshold constant A;. We have tested different values for
|'K| = 1, 2,3. We obtained more accurate NIDS decisions with larger
values of ||, an indication that the intuition is correct, sampling
over a larger set of iterations helps improve decisions. So |K| =3
in our tests. The threshold constant A has been set to A; = 1.3. As
for Method 1, this constant is used to classify neighbors of module
i as belonging to NiF or to NiT. If this constant is too high, it will
fail to detect attacks, if too low modules with widely fluctuating
initial readings will be classify falsely as compromised.

4.24 Method 3. This method has only one parameter, the thresh-
old parameter §(t), the other parameter 5 has been set to n = 1,
essentially playing no role in this current set of tests. We have
use a same and constant value for §(t), i.e. 5(t) = 2.3. In fact
|xirj(t)—xj(t)| = 0 when both i and j are not compromised. However,
rounding errors occur when the weight matrix W is updated in
Method 3. The value §(t) is used mainly to filter out these rounding
errors.

4.3 Computational cost

Table 1 reports the computational overhead of each of the three
defense strategies. The tests are executed while no attack take place.
The column "Cost" reports the time in milliseconds for running the

231

Michel Toulouse and Phuong Khanh Nguyen

NIDS network simulation during 1000 iterations. In Table 1, rows
"no detection" give the cost of running a NIDS network without
the execution of any detection code. Rows "Method 1", "Method 2"
and "Method 3" give the cost of running NIDS modules while also
executing respectively the code of each detection method. Table 1
shows clearly there is a cost for protecting against Byzantine attacks.
The higher running costs for the defense strategies compared to
"no detection" for the same network size and topology reflect those
costs. From Table 1 we gather that Method 1 and Method 3 have
about the same overhead, while Method 2 is about 1.5 to 2 times
more expensive than the two other methods.

Table 1: Overheads for running each method

Topologies | Sizes | Detection Cost
no detection | 2656

9 Method 1 3095

Ring Method 2 3539
Method 3 3111

no detection | 7526

25 Method 1 8182
Method 2 12152
Method 3 12048

no detection | 2566

9 Method 1 3758

Torus Method 2 4403
Method 3 3082

no detection | 6261
25 Method 1 10943
Method 2 20849

Method 3 9213

no detection | 2731

Petersen 10 Method 1 3791
Method 2 5318

Method 3 3091

4.4 Accuracies and convergence speed

Table 2 summarizes the main numerical results of this study. It
records data about 1- NIDS accuracy, i.e. how well the network
intrusion detection system performs; 2- the defense methods ac-
curacy, i.e. how accurately each method identifies compromised
modules; 3- the convergence speed of the consensus phases.
NIDS accuracy is related to the decision phases of the honest
modules. It is the ratio of accurate decisions over all decisions. In
Table 2 this is recorded under the column NIDS for each method.
For example, the value 0.94 in row 2 of the NIDS column for Method
1 specifies that, out of 1000 decisions, which is 94% accuracy for
the ring network with 9 nodes and one attacker. Even though each
module output an independent decision at the end of a consensus
phase, honest modules output the same decision, therefore the set
of decisions made by honest modules is recorded as one decision.
As defined in Section 2.2.2, convergence speed is a measure of
the computational effort made by the honest modules to agree on a
decision. In columns "Speed", Table 2 reports the average number
of iterations performed by the consensus phases during the 1000

Protecting Consensus Seeking NIDS Modules against Multiple Attackers

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

Table 2: NIDS accuracy, convergence speed and methods accuracy

Topologies | Sizes Attack scenarios Method 1 Method 2 Method 3
NIDS Speed False | NIDS Speed False NIDS Speed False
9 no attacker 0.96 72 94/0 0.93 46 455/0 0.98 34 0/0
Ring 1 attacker 0.94 101 53/6 0.93 81 538/164 0.98 67 0/1064
95 no attacker 0.97 177 483/0 0.94 92 2528/0 0.99 114 0/0
1 attacker 0.97 181 411/6 0.94 117 2841/234 0.99 129 0/6161
no attacker 0.97 22 30/0 0.96 95 1580/0 0.98 10 0/0
1 attacker 0.96 33 26/12 0.94 133 961/530 0.98 12 0/174
9 2 colluding attackers 0.96 41 22/43 0.92 132 317/855 0.98 16 0/471
2 non-colluding attackers | 0.96 34 32/36 | 0.92 145 380/795 0.98 17 0/461
3 colluding attackers 0.94 60 19/143 0.84 620 798/4567 0.98 30 0/1201
Torus 3 non-colluding attackers | 0.94 42 21/72 0.89 151 111/1218 0.98 23 0/893
no attacker 0.99 68 283/0 0.97 219 9881/0 0.99 30 20/0
1 attacker 0.99 72 258/11 0.97 213 7846/855 0.99 33 18/1502
25 2 colluding attackers 0.99 84 265/30 0.96 224 6832/1862 0.99 37 16/3365
2 non-colluding attackers | 0.99 80 229/18 | 0.97 228 6591/1707 | 0.99 35 16/3216
3 colluding attackers 0.98 95 255/71 0.94 271 6811/3523 0.99 43 15/5780
3 non-colluding attackers 0.99 85 260/68 0.95 235 5180/2532 0.99 39 15/5202
no attacker 0.98 27 46/0 0.95 142 1924/0 0.99 12 0/0
Petersen 10 1 attacker 0.97 40 36/9 0.94 142 1137/424 0.99 17 0/292
2 colluding attackers 0.96 59 35/18 | 0.92 203 811/1339 | 0.99 29 0/927
2 non-colluding attackers | 0.97 50 31/14 | 0.93 181 754/929 0.99 24 0/788

iterations of a simulation. For example, the value 101 in row 2 of the
Speed column for Method 1, means that, on average, a consensus
phase executed 101 iterations for the ring network with 9 nodes
and one attacker. Convergence speed is impacted obviously by
attackers which disrupt the consensus loop of honest modules.
Measurements reported in the columns "Speed" are an indication
of how well each defense method is coping with attacks. Hidden
in those measurements is a cost associated to modify the weight
matrix each time a module is suspected of been compromised, this
also has an impact on consensus convergence speed [20].

Last is the accuracy of the defense methods. This has been
recorded as the number of times a module i has been identified as
compromised when it was not (false positives) or was not identi-
fied as compromised when it was (false negatives). Under columns
"False", these values are entered as (false positives)/(false nega-
tives). False positives are computed as follow (false negatives are
computed similarly): consider row 1 of ring 9 where the consen-
sus phase last on average 72 iterations. A module i in a ring has
two neighbors, therefore at each iteration of a consensus phase
it could be falsely identified as compromised twice. So totally
10000 X 72 X 9 X 2 = 1,296,000 is the number of opportunities
that modules can be labeled falsely as compromised. Table 2 reports
94 false positives for ring 9 nodes, which is 0.00072530864% of false
positives. Similarly, for Method 2, Torus 25 nodes, 3 colluding at-
tackers, there are 1000 X 271 X 25 X 4 = 27100000 opportunities that
modules can be labeled falsely as compromised. The total number
of false positive is 6811, which is 0.25132841328% of the oppor-
tunities , less than 1%. From our analysis, these numbers are too
insignificant to impact NIDS accuracy. However, each false positive
causes an entry of the weight matrix to be modified, which impacts
the convergence speed of the consensus phase. The convergence

speeds between Method 1 and Method 3 in row 1 are not the same,
though everything else is equal. Method 1 has 94 false positives
while Method 3 has none.

The types of attacks in Table 2 are described under the "Attack
scenarios”’ column. The "no attacker" label corresponds to sim-
ulations where all the NIDS modules are honest. The label "one
attacker" refers to simulations where, at each consensus phase, one
NIDS module is selected randomly to be a compromised module.
The "two colluding attackers" label refers to simulations where,
at each consensus phase, one NIDS module is selected randomly
to be a victim and two of its neighbors are selected randomly to
be compromised. Attack scenarios labeled "two non-colluding at-
tackers" correspond to simulations where, at each consensus phase,
two NIDS modules are selected randomly to be compromised mod-
ules. Attack scenarios "three colluding attackers" and "three non-
colluding attackers" are same as the two previous attack scenarios
except there are three attackers. We note that the range of attack
scenarios differ among the network topologies. For example, Table
2 display results only for one attacker for ring networks. Based on
results in [10, 17] and others, beyond a certain number of attackers,
the Byzantine agreement problem has no solution. Ring networks
cannot be defended against Byzantine attacks if the number of at-
tackers is greater than one. Assume modules 1 and 4 in Figure 1 were
compromised, the weight of edges adjacent to these two modules
will decrease quickly, effectively disconnecting the network (the
convergence condition 1 in Section 2.1 is no longer satisfied), which
prevents honest modules 2 and 3 from exchanging information and
making consensus . For the regular graphs (networks) tested in this
work, they get disconnected if the number of attackers is greater or
equal to the degree of the nodes in the graph. The degree of nodes
in ring, 2-D torus and Petersen graphs is respectively two, four and

232

SolCT 17, December 7-8, 2017, Nha Trang City, Viet Nam

three. Table 2 reports results of attack scenarios of up to 3 colluding
and non-colluding attackers, depending on the connectivity of each
network topology.

Overall we observe from Table 2 that Method 3 dominates the
two other methods both in terms of accuracy and convergence
speed. Ring networks converge more slowly, this is expected as the

diameter of rings n/2, is greater than for 2-D torus n? and Petersen
graph 2. It takes more iterations for information to diffuse across all
the modules of a ring. Attacks impact accuracy for Method 1 and
Method 2. For all methods, convergence is slower under attacks,
the larger the number of compromised modules, the slower the
convergence. For all methods, it is easier to deal with non-colluding
attackers. The three defense methods are potentially useable in
practice to defend against multiple attackers, which is probably the
most significant and "unexpected" conclusion from this study.

5 CONCLUSION

The object of this study was to test whether proposed defense
strategies in the literature against multiple Byzantine attacks work
in practice. We have implemented and tested variations of three
defense strategies, two inspired from outlier detection techniques
and one from reputation-based techniques. These implementations
protected consensus seeking modules in a fully distributed network
intrusion detection system. Our experimental results indicate that
all three are promising approaches to defend in practice against
multiple Byzantine attacks, this at a reasonable computational cost.

For future work, this study will be made more comprehensive
by including control theoretical defense methods and potentially
other outlier and reputation-based methods. More extensive attack
scenarios will be considered to analyze the difficulty of fine tuning
parameters and the capacity of the different methods to response
to versatile attack scenarios.

ACKNOWLEDGMENTS

Funding for this project comes from the Professorship Start-Up
Support Grant VGU-PSSG-02 of the Vietnamese-German University.
The authors thank this institution for supporting this research.

REFERENCES

[1] J. A. Benediktsson and P. H. Swain. 1992. Consensus theoretic classification
methods. IEEE Transactions on Systems, Man, and Cybernetics 22, 4 (Jul 1992),
688-704. https://doi.org/10.1109/21.156582

S. Bhattacharjee, R. Rajkumari, and N. Marchang. 2015. Effect of colluding attack
in collaborative spectrum sensing. In 2015 2nd International Conference on Signal
Processing and Integrated Networks (SPIN). 223-227. https://doi.org/10.1109/SPIN.
2015.7095266

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. 2006. Ran-
domized Gossip Algorithms. IEEE/ACM Trans. Netw. 14, SI (June 2006), 2508-2530.
https://doi.org/10.1109/TIT.2006.874516

Morris H. Degroot. 1974. Reaching a consensus. j. Amer. Statist. Assoc. 69, 345
(1974), 118-121. http://www.jstor.org/stable/2285509

R. Gentz, S. X. Wu, H. T. Wai, A. Scaglione, and A. Leshem. 2016. Data Injection
Attacks in Randomized Gossiping. IEEE Transactions on Signal and Information
Processing over Networks 2, 4 (Dec 2016), 523-538. https://doi.org/10.1109/TSIPN.
2016.2614898

Guangjie Han, Jinfang Jiang, Lei Shu, Jianwei Niu, and Han-Chieh Chao. 2014.
Management and applications of trust in Wireless Sensor Networks: A survey. J.
Comput. System Sci. 80, 3 (2014), 602 — 617. https://doi.org/10.1016/j.jcss.2013.06.
014 Special Issue on Wireless Network Intrusion.

Vittorio P. Illiano and Emil C. Lupu. 2015. Detecting Malicious Data Injections in
Wireless Sensor Networks: A Survey. ACM Comput. Surv. 48, 2, Article 24 (Oct.
2015), 33 pages. https://doi.org/10.1145/2818184

=

233

Michel Toulouse and Phuong Khanh Nguyen

[8] B.Kailkhura, S. Brahma, and P. K. Varshney. 2017. Data Falsification Attacks on
Consensus-Based Detection Systems. IEEE Transactions on Signal and Information
Processing over Networks 3, 1 (March 2017), 145-158. https://doi.org/10.1109/
TSIPN.2016.2607119

Sumit Kar, Srinivas Sethi, and Manmath Kumar Bhuyan. 2016. Security Challenges
in Cognitive Radio Network and Defending Against Byzantine Attack: A Survey.
Int. . Commun. Netw. Distrib. Syst. 17, 2 (Jan. 2016), 120-146. https://doi.org/10.
1504/IJCNDS.2016.079098

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 382-401.
https://doi.org/10.1145/357172.357176

Shancang Li, George Oikonomou, Theo Tryfonas, Thomas Chen, and Li Xu.
2014. A distributed consensus algorithm for decision-making in service-oriented
Internet of Things. Transactions on Industrial Informatics 10, 2 (2014), 1461-1468.
https://doi.org/10.1109/T11.2014.2306331

Sheng Liu, Haojin Zhu, Shuai Li, Xu Li, Cailian Chen, and Xinping Guan. 2012. An
Adaptive Deviation-tolerant Secure Scheme for distributed cooperative spectrum
sensing. In 2012 IEEE Global Communications Conference, GLOBECOM 2012, Ana-
heim, CA, USA, December 3-7, 2012. 603-608. https://doi.org/10.1109/GLOCOM.
2012.6503179

Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

R. Olfati-Saber, J. A. Fax, and R. M. Murray. 2007. Consensus and Cooperation
in Networked Multi-Agent Systems. Proc. IEEE 95, 1 (Jan 2007), 215-233. https:
//doi.org/10.1109/JPROC.2006.887293

F. Pasqualetti, A. Bicchi, and F. Bullo. 2007. Distributed intrusion detection for
secure consensus computations. In Decision and Control, 2007 46th IEEE Conference
on. 5594-5599. https://doi.org/10.1109/CDC.2007.4434297

F. Pasqualetti, A. Bicchi, and F. Bullo. 2012. Consensus Computation in Unreliable
Networks: A System Theoretic Approach. IEEE Trans. Automat. Control 57, 1 (Jan.
2012), 90 - 104.

M. Pease, R. Shostak, and L. Lamport. 1980. Reaching Agreement in the Presence
of Faults. J. ACM 27, 2 (April 1980), 228-234. https://doi.org/10.1145/322186.
322188

S. Sundaram and C. N. Hadjicostis. 2011. Distributed Function Calculation via
Linear Iterative Strategies in the Presence of Malicious Agents. IEEE Trans.
Automat. Control 56, 7 (July 2011), 1495-1508. https://doi.org/10.1109/TAC.2010.
2088690

Michel Toulouse, Hai Le, Cao Vien Phung, and Denis Hock. 2016. Robust
Consensus-based Network Intrusion Detection in Presence of Byzantine At-
tacks. In Proceedings of the Seventh Symposium on Information and Commu-
nication Technology (SoICT ’16). ACM, New York, NY, USA, 278-285. https:
//doi.org/10.1145/3011077.3011121

Michel Toulouse, Hai Le, Cao Vien Phung, and Denis Hock. 2017. Defense
Strategies against Byzantine Attacks in a Consensus-Based Network Intrusion
Detection System. Informatica, An International Journal of Computing and Infor-
matics 41, 2 (2017), 193-207.

Michel Toulouse, Bui Quang Minh, and Philip Curtis. 2015. A Consensus Based
Network Intrusion Detection System. In IT Convergence and Security (ICITCS),
2015 5th International Conference on. IEEE, 1-6. http://dblp.uni-trier.de/db/conf/
icites/icites2015.html#ToulouseMC15

F. Tschorsch and B. Scheuermann. 2016. Bitcoin and Beyond: A Technical Survey
on Decentralized Digital Currencies. IEEE Communications Surveys Tutorials 18,
3 (thirdquarter 2016), 2084-2123. https://doi.org/10.1109/COMST.2016.2535718
J. Tsitsiklis, D. Bertsekas, and M. Athans. 1986. Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms. Automatic Control,
IEEE Transactions on 31, 9 (Sept. 1986), 803-812.

Tamas Vicsek, Andras Czirdk, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet.
1995. Novel Type of Phase Transition in a System of Self-Driven Particles. Phys.
Rev. Lett. 75 (Aug 1995), 1226-1229. Issue 6. https://doi.org/10.1103/PhysRevLett.
75.1226

Lin Xiao, Stephen Boyd, and Seung-Jean Kim. 2007. Distributed average consensus
with least-mean-square deviation. J. Parallel and Distrib. Comput. 67, 1 (2007), 33
- 46. https://doi.org/10.1016/j.jpdc.2006.08.010

Qiben Yan, Ming Li, Tingting Jiang, Wenjing Lou, and Y Thomas Hou. 2012.
Vulnerability and protection for distributed consensus-based spectrum sensing
in cognitive radio networks. In INFOCOM, 2012 Proceedings IEEE. IEEE, 900-908.
Yanli Yu, Keqiu Li, Wanlei Zhou, and Ping Li. 2012. Trust mechanisms in wireless
sensor networks: Attack analysis and countermeasures. Journal of Network and
Computer Applications 35, 3 (2012), 867 — 880. https://doi.org/10.1016/j.jnca.2011.
03.005 Special Issue on Trusted Computing and Communications.

Wente Zeng and Mo-Yuen Chow. 2014. A Reputation-Based Secure Distributed
Control Methodology in D-NCS. IEEE Trans. Industrial Electronics 61, 11 (2014),
6294-6303. http://dblp.uni-trier.de/db/journals/tie/tie61.html#ZengC14
Linyuan Zhang, Guoru Ding, Qihui Wu, and Fei Song. 2016. Defending Against
Byzantine Attack in Cooperative Spectrum Sensing: Defense Reference and
Performance Analysis. IEEE Access 4 (2016), 4011-4024. https://doi.org/10.1109/
ACCESS.2016.2593952

[12

(13

[14

oy
&

[16

[17

(18]

[19

[20

[21

[22

[24

[25]

[26]

&
=

[28

[29

