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Abstract

The Recovery-based Discontinuous Galerkin (RDG) discretization has been shown to be
the most accurate among contemporary DG schemes for diffusion on a Cartesian grid. It
achieves the order of accuracy 3p + 2 for even p and 3p + 1 for odd p, where p is the order
of the polynomial basis. However, the overall performance of a Navier—Stokes simulation,
using RDG for viscous terms, is limited to 2p+1 due to the DG discretization for advection.
We describe two different approaches to improve the accuracy of the DG discretization for
advection. The first option is able to reach a maximal order of 4p 4 3, albeit utilizing an
enlarged computational stencil. The second one attains 3p + 1 without enlarging the stencil.
It is also computationally cheaper owing to the lower-order reconstruction.

I. Introduction

Discontinuous Galerkin (DG) methods combine advantages of finite volume (FV) and fi-
nite element (FE) approaches into a single framework. The Galerkin formulation, borrowed
from the FE methodology, produces a high-order accurate and compact-stencil scheme with
several advantages over high-order FV and finite difference (FD) methods, such as their
portability to complex geometries, scalability in parallel architecture and relatively simple
extension to high order. The discontinuous nature of the basis functions in each cell in-
troduces means for adding numerical dissipation in the convective terms, such that, unlike
traditional FE schemes, discontinuous solutions can be captured in a stable fashion. The
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Figure 1: Recovery in one dimension for a piecewise-linear discretization (p = 1) on two adjacent inter-

vals (—1,0) and (0,1). Shown are, from left to right, the original sin initial value U(z) (dashed), its
piecewise-linear projection u(x) (thin and solid), together with U(z), and the cubic recovered func-
tion f(x) (thick and solid) together with u(z) and U(xz). All three distributions yield the same value
when taking their inner product with either test function on either interval, making them indistin-
guishable in the weak sense.

DG method was originally introduced for solving the steady-state neutron transport equa-
tion on triangular meshes,” and later analyzed.?® The introduction of the Runge-Kutta DG
(RKDG) method by Cockburn and Shu®® made this approach appealing for time-dependent
convection-dominated problems. The RKDG method was shown to be well-suited to handle
shocks through the use of slope limiters in one and two dimensions, on rectangular and tri-
angular meshes. Similar to F'V schemes, DG methods use Riemann solvers to determine the
inter-cell flux and thus introduce the appropriate amount of dissipation at the discontinuities.

However, the main difficulty preventing a simple extension to solving diffusive terms
(i.e., second-order derivatives or differences), such as in the Navier-Stokes equations, is the
fact that derivatives are undefined at cell interfaces due to the discontinuity in the basis
functions between neighboring cells. Two main approaches have been followed in the past:
one in which gradient information is provided and which is stabilized by interior penalty
terms or artificial diffusion with adjustable parameters; and another more recent based on
the idea of recovery of the underlying function over neighboring cells. With the former,
interior penalty methods have been used for elliptic and parabolic problems.™ ™ Another
class of methods treat the second-order partial differential equations as a system of first-order
equations.™ ™ Such methods have been used to solve for diffusive terms, but there is no
consistent methodology and adjustable parameters are required.

In recovery,™ % the discontinuity at the interface is removed in the weak sense by a
local polynomial required to satisfy moments with the original solution in the elements that
span the interface. A typical one-dimensional example is shown in Figure (I). The smooth
recovered function is used to compute the necessary function values and derivatives at the
interface. The resulting recovery-based discontinuous Galerkin method (RDG) is proved to
be stable.™ Utilizing a p-order elemental tensor-product polynomial basis, RDG has been
demonstrated to achieve the order 3p 4 2 or 3p + 1 for p even or odd, respectively,™ on a
Cartesian grid. Huynh?” shows that RDG is the most accurate, and has the most favorable
stability restriction, in a comparison study of all contemporary DG schemes for diffusion.
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The result is robust: it holds in any number of dimensions, for linear as well as nonlinear
equations, with or without mixed derivatives. Lo™% was the first to show the optimal
accuracy for a 2-D diffusion-shear operator and for the 2-D Navier-Stokes terms; Johnsen et
al.”? showed it for 3-D turbulence calculations.

We are interested in utilizing RDG in DNS simulations, e.g., compressible isotropic tur-
bulence and the Taylor—Green vortex that were presented in 24. Owing to the simplicity in
computational domains, a Cartesian grid is sufficient, and it brings out the best in RDG.
However, the current overall accuracy of the simulations is seriously impaired by the DG
discretization for the advection terms due to its lower order of accuracy (2p + 1 compar-
ing to 3p + 2/3p + 1 of RDG). To benefit fully from RDG, improvement to the advection
discretization has to be made.

In our previous paper,”” we have presented two approaches to improving the DG advec-
tion discretization. In the first approach named cell-centered reconstruction, an enhanced
representation for the center cell is reconstructed using data also from the left and right
neighbors, leading to an enlarged overall stencil of 5 cells in one dimension. One particular
scheme of this family, the ccf, is identical to the P,Ps,.5 by Dumbser.”® Schemes in this
family can achieve the maximal order 4p + 3 as shown by Von Neumann (Fourier) analysis.
To preserve the compactness, however, we develop a second approach denoted interface-
centered reconstruction, in which the maximal order of accuracy is 3p + 1 and the overall
stencil stays unchanged: 3 cells in one dimension and 5 cells in two dimensions.

The purpose of this paper is to present i) the numerical validation of the one-dimensional
results and ) the analysis in two dimensions. In Sections [ and [, we present the con-
cepts of improving advection discretization in one and two dimensions, respectively. Results
obtained from Fourier analyses are also mentioned. The one-dimensional numerical results
are shown in Section M. Our conclusions are presented in Section M, together with ideas for
further developments.

II. Concepts of Improving DG Discretization for Advection in
One Dimension

We start out by enhancing performance of DG discretization for the one-dimensional
linear scalar advection equation

O+ 0, F (u) = 0, (1)

where F'(u) = au and the advection speed a is assumed to be positive without loss of
generality. The flux at an arbitrary interface j+1/2 is calculated by upwinding from the
left and right values of u at that interface, vy and ug respectively. In the basic DG scheme
for advection, they are calculated from the numerical representations u;(z) and w;1(x) as
shown schematically in Figure (2a). The resulted scheme achieves the order of accuracy
2p + 1. The overall computational stencil to evolve solution in cell j contains three cells:
j—1 jand 7+ 1.

To improve the accuracy within the upwinding framework, we have to raise the polynomial
order of the numerical representations from which u; and ugr are calculated. The higher-
order representations ;1o () and ;41/9 r(x) will be reconstructed from available data
in the vicinity of the interface of interest. This is the standard technique employed in
high-resolution FV methods, such as MUSCL.” This technique has been used successfully
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Figure 2: Stencils of flux computation at an arbitrary interface.

in DG+MUSCL? to gain one extra order of accuracy quickly and cheaply. Below, we will
present two different systematic approaches to attain our goal of having comparable accuracy
with that of RDG: cell-centered and interface-centered reconstructions.

II.A. Cell-centered reconstruction

In this approach, the higher-order polynomial representation ;4191 (x) is reconstructed
using data from three cells j — 1, j and j 4+ 1. Similarly, the reconstruction of ;412 r(2)
uses data from three cells 7, 7 + 1 and j + 2. Then the required interface values u; and ug
are calculated from those as illustrated in Figure (2H). Repeating the same procedure at
interface j—1/2 will show that indeed ;_1 /9 gr(2) is identical to w;41/2,(z). Thus, there is
one enhanced representation #; that is unique to cell j; the reconstruction is therefore called
cell-centered.

The reconstructed @ is required to be indistinguishable from the original u;_;, u; and
uj41 in the weak sense, that is,

Tj_1/2 R Tj—-1/2
/ (Uk)j_1 U de = / (Uk)j_1 uj1dr, k=0,.., K4, (2)
Tj—-3/2 Tj—-3/2
Tj+1/2 R Tj+1/2
/ (vr); U dx = / (vp);ujdr, k=0,..,p, (3)
Tj—1/2 Tj—1/2
Tj+3/2 R Tj+3/2
/ (Uk)jJrl U, de = / (Uk)j+1 ujprdr, k=0,.., K. (4)
Tj+1/2 Tj+1/2

To satisfy these equations, & must contain K;_; +p+ Kj11 + 3 degrees of freedom to form a
polynomial of degree p = K;_; +p+ K1 + 2, defined on the domain [mj_g/Q, xj+3/2} . Basis
functions (vg);_, (vx); and (vg),,, define specific moments of the original solutions (u;-1,
uj, uj+1) that 4 has to preserve on their corresponding cells.

In theory, values of K;_; and Kj; can be different that leads to a bias reconstruction.
In the context of linear scalar advection, one can argue for using upwind-bias reconstruction
by utilizing more data from the left cell than from the right one (K,;_y > Kjiq). For a
system of advection equations, however, the wave structure at the interface is more complex
with both left- and right-traveling waves. It is thus better not to favor any direction at this
reconstruction step; from now on we take K;_; = K;; = K. This approach is similar to
the Py Py method developed by Dumbser.” 5% 5
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Based on the number of moments from cells j — 1 and j + 1 to be preserved in ;, we
have considered two options for the reconstruction.

1. Full reconstruction. All p + 1 moments from each neighbor are preserved, i.e. K = p,
making ; a polynomial of degree 3p+2. We anticipate that the order of accuracy will
increase to 4p + 3, comparing to 2p + 1 of the basic scheme; the difference is precisely
the amount of additional information taken from the neighbors. In the terminology
of the Py Py method, this option corresponds to the P,Ps,.2 scheme. This option is
called ccf# which denotes cell-centered full reconstruction at p = #. Interchangeably,
the term ccf might be used to indicate this scheme in a generic case.

2. Partial reconstruction. The previous option is an overkill as the accuracy of RDG
for diffusion is only 3p 4+ 2/3p + 1 for even/odd value of p. We expect to match the
accuracy of RDG more closely by using only a subset of what is available. Specifically,
we choose to preserve ’%2 or Z%l moments (for p even or odd, respectively) from each
neighbor cell to achieve the accuracy of 3p + 3/3p + 2, making @; a polynomial of
degree 2p + 2/2p + 1. In the Py Py terminology, this option corresponds to N = p
and M = 2p+ 2/2p + 1. However, this is not strictly a PyPy as formulated by
Dumbser et al.,”*%" in which 4, is required to always preserve all available moments

of u;_1, uj, and u;4; on their respective domains. This generates 3p + 3 conditions

while, by construction, 4; has only 2p + 3 degrees-of-freedom for even p and 2p + 2

for odd p, leading to a overdetermined system that has to be solved by least-squares

reconstruction. Our approach is therefore simpler and sufficiently accurate still. As
before, this option is denoted ccp# to indicate cell-centered partial reconstruction at

p = #, or ccp for the generic case. B

One apparent disadvantage of the cell-centered reconstruction is the enlarged five-cell
overall stencil, even though the stencil stays unchanged regardless of p value. It is highly
preferable to retain the original compact 3-cell stencil while improving the discretization.
We will present our ideas for this matter in the next subsection.

I1.B. Interface-centered reconstruction

To keep the overall stencil unchanged from three cells, the calculation for flux at interface
j+1/2 should involve only data from its direct neighbors as shown in Figure (2d). The
reconstruction of ;412 .(¢) and ;412 r(x) therefore uses information only from cells j and
J+1. Similarly, that of @;_1/,1(x) and ;_1/2,r() contains information only form cells j —1
and j. Now defined on the domain of cell j, there are two different enhanced representations,
Uj_1/2,r and 1412 1, that strictly associate with interfaces j— 1/2 and j+1/2, respectively.
In other words, they are centered at their corresponding interfaces, thus the name interface-
centered reconstruction is used.

Our first idea is to reuse the recovered function f(x) that is already calculated for the
diffusion discretization. As shown in Figure (), f is centered at the interface of interest and
its reconstruction involves only two direct neighbor cells. However, to directly use f;42/2 for
flux calculation at interface j+1/2 is essentially similar to central discretization, which has
undesired stability property for advection problem.*? To create Ujt1/2,, and Uj4q/0,r that
are discontinuous at x;,1/2, f is down projected to two lower-order polynomials defined on
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(a) Down Projection (icd1[—1]) (b) Binary Reconstruction (icb1[0])

Figure 3: Illustration of the down-projection and binary reconstructions for p = 1. The recovered function f
(solid thick black line) and the piecewise-linear representations u (solid thin black line) are carried
over from Figure (I). Note that 4(z) (solid thin magenta line) from both down-projection and
binary reconstructions is discontinuous across =z = 0 interface as expected.

cells 7 and 7 + 1. Recall that f is a polynomial of degree 2p + 1; it can be down projected
to polynomials of degrees p, where p+1 < p < 2p.

Tj+1/2 R Tjt1/2 R
/ (Uk)j Uj+1/2,Ld$ = / (Uk)j fj+1/2d$, k=0,..p, (5)
Tj—1/2 Tj—1/2
Tj+3/2 R Tj43/2 R
/ (Uk)j+1 Uj+1/27Rd$ = / (Uk)j+1 fj+1/2 dI, k :0,...,p. (6)
Tjt1/2 Tjt+1/2

The recovered function f is not down projected to polynomials of degree p because it results
in u; and w41, which form the basic scheme.

Resulting schemes will be called icd#; [—#-] standing for interface-centered down pro-
jection at p = #;; its generic name is icd. The number between the square brackets, #s,
denotes the reduction amount in polynomial degree of u;1/2 1,/r comparing to f. For exam-
ple, scheme icd1[—1] has f down projected to polynomials of one-degree less, i.e., uj1/2,1/r
are 2p™-order polynomials. Figure (Bd) illustrates two enhanced representations, g and
Uo,r, associated with interface x = 0 of scheme icdl[—1], for p = 1 discretization; the
recovered function f and the piecewise-linear representations are carried over from example
in Figure ().

We expect that the central scheme resulted from direct usage of f achieves the order

2p+1)+(p+1)=3p+2.

The order of accuracy of an arbitrary icd#; [—#3] scheme will then be 3p+ 2 — #3, and the
only viable scheme is icd#; [—1]. It matches RDG scheme for odd p but achieves one-order
lower when p is even.

The second idea of compact reconstruction is inspired by the recovery procedure in RDG,
with a small modification. The reconstruction for ;1,2 will now bias towards the left
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Table 1: Down-projection and binary-reconstruction schemes.

p | Down Projection Binary Reconstruction
p Scheme names | p K Scheme names
12 icdl[-1] {0} icb1 [0]
{1} icbl[1]
214 icd2[—1] 4 {0,1} icb2[0, 1]
{0,2} 1cb2[0,2]
{1,2} icb2[1,2]
3 icd2[-2] 3 {0} icb2[0]
{1} icb2[1]
{2} icb2[2]
316 icd3[—1] 6 {0,1,2} icb3[0,1,2]
{0,1,3} icb3[0,1,3]
{0,2,3} 1icb3[0,2,3]
{1,2,3} icb3[1,2,3]
5 icd3[-2] 5 {0,1} icb3 [0, 1]
{0,2} icb3 [0, 2]
{0,3} icb3 [0, 3]
{1,2} icb3[1, 2]
{1,3} icb3[1,3]
{2,3} icb3[2, 3]
4 icd3[-3] 4 {0} icb3[0]
{1} icb3[1]
{2} icb3[2]
{3} icb3[3]

neighbor, cell j, indicating it might preserve more moments of u; than those of w41,

Tj+1/2 R Tj+1/2
/ (vk.)j Ujy1/2,0dT = / (vk)j uidr, k=0,..

Tj—1/2

Tj—1/2

Tj+3/2
/ (Vi) ;41 Qjr1/2,0 do =
Tjt1/2

Tj+3/2
/ (vr) ;41 Ujprde, k€K,

Tj41/2

(7)
(8)

where K is only a subset of {0,...,p}, which are indexes of all moments of the original
numerical representations. Similarly, the reconstruction for ;o g biases towards u;,; of
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Table 2: Results from Fourier analysis for p=1

Scheme ooa® Taylor-series expansion of .y,
4
- b iR 5
basic 3 15 = + 0 (p°)
ccfl T —if— B +0(B%)
19600
1136
1 —if3 — 7
ccp 5 i 72004—0(5)
‘ 2'55 56
icdl[—1 4 - — 4+ — 7
icdl[—1] i+ 155+ 105 + O (5)
‘ 2'55 ﬁG
icbl 4 - _—— 7
icb1[0] B+ 155~ 253 TO B0
i 5 6 .
icbl[1 4 —3 _——
icbl[1] W8+ 15~ 133 T 08"

¢ Order of accuracy
b Basic DG discretization for advection

the right neighbor,

Tjt1/2 R Tjt+1/2
/ (vk); Wjt1/2,rdT = / (vr); ujdz, k€K, (9)
Tj—1/2 Tj—1/2
Tj+3/2 R Tj+3/2
/ (vk)jJrl Ujy1/2,rdr = / <Uk)j+1 ujprdr, k=0,..,p, (10)
Tj+1/2 Tj+1/2

The same subset K will be used in both Egs. (B) and (8). There are at most p elements
in K and they are not required to be sequential. For example, K = {0,2} indicates that
Uj41/2, and 4172,z Will only preserve the 0*-order and 2"?-order moments of Ujt1 and u;
respectively. All schemes of this family will be called icb#; [#2] denoting interface-centered
binary reconstruction at p = #;, and #, are all elements of subset K; again, icb is used
for a generic case. The enhanced representations from scheme icb1[0] (p = 1) is displayed
in Figure (BH).

In terms of order of accuracy, we expect that the binary-reconstruction schemes will
achieve a maximal order of 3p + 1 corresponding to K has p members. There are p + 1
possibilities to form distinct and orderless subsets of this type from the set {0,1,...,p},
leading to p+ 1 flavors of a (3p + 1)-order binary-reconstruction scheme. When the number
of members in K is less than p, the order of accuracy reduces accordingly.

All possible down-projection and binary-reconstruction schemes for p € [1, 3] are shown
in Table M. Tables P and B depict the results obtained by Fourier analysis for p = 1 and p = 2,
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Table 3: Results from Fourier analysis for p=2

Scheme ooa Taylor-series expansion of .y,
basic 5 —if— i +0(B7)
7200
ccf2 11 —if - 5—12 + O (B13)
426 888 000
. 103 B10
2 _ e 11
ccp 9 = roassn T OV
icd2[-11 7 —if+ B +0(p?)
793 800
icd2[-2] 6 i if + 0 (B%)
1 J— —_— J—
34 650
° 9
b2 10, 1 .
icb2[0,11 7 —if+ oo + O (87)
, 1338
icb2[0, 2 7T — — 4+ 0(p
icb2[0, 2] 25+1058400+ (87)
icb2[1,2] 7 i+ F + 0 (6)
’ 66 150
, 17487
ich2 - 8
icb2[0] 6 —if+ joaoss T OB
4 29437
icb2[1 — _— 8
icb2[1] 6 16+604800+O(5)
icb2[2] 6 —if+ i + 0 (B°)
16 800

respectively. It must be noted that the ooa obtained from Fourier analysis corresponds to
that of the cell average.

III. Interface-Centered Binary Reconstruction in Two
Dimensions

Our previous results® from Von Neumann analysis showed that icd is not a good option
due to its inconsistent behavior with respect to stability. In that same paper, the icb scheme
was shown to behave much better. Thus, we expand only icb schemes into two dimensions.
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Figure 4: Two options to choose which original moments of cells (2; ; and ;1 ; that the reconstructed
@j41/2,;, Will preserve (p = 1). The two options for i;,,/5 p (between cells Q; ; and Q; ;1) are also
shown.

Without loss of generality, we consider the reconstructed polynomial t;;1/5 7 that is
centered at the interface between cell €); ; and cell ;1 ;, at p = 1. This enhanced polynomial
biases to the left cell, hence it preserves all original moments of cell €; ; and only a few
from the right one. The reconstruction equations are straightforward extensions of Egs. ([)

and (8):
L.,

/ (Uk,l)i_;,_Lj ﬁ'Z'Jrl/Z,de dy = / (Uk,l)i_;,_Lj uz’-‘rLjdx dy, ke Ical € {07 1}7 (12)
Qit1,5

Qig1,j

(Uk,l),hj ai—i—l/?,de dy - \/g; (Uk,l)@j ui,jdx dya {k7 l} € {Oa 1}) (11)

where k and [ are indications of the highest powers of x and y in the preserved moments, re-
spectively. In icb1[0], K = {0} indicating that ;1 /o 1, preserves moments that correspond
to 2% = 1 and 2%"' = y as shown in Figure (£d). Similarly, the reconstruction in icbl[1]
(K = {1}) will preserve moments corresponding to z'y" = z and z'y' = zy as shown in
Figure (EH). The highest order term in ;15 1, calculated from Eqgs. () and (I2), in both
icb1[0] and icbl[1] schemes, is z2y!.

The polynomial ;1/9p centered at the interface between cell €2; ; and cell €; ;4 will
satisfy the following similar equations:

/ (Vkt); 5 Ujrjo,5da dy = / (k) ; uigde dy,  {k,1} € {0, 1}, (13)
Qi,j Qi,j
/ (,Ukvl)i,j+1 ’lALjJrl/Q’Bdﬁ dy = / (Ukvl)i,j+1 Uz‘7j+1d{lf dy, kf € {0, 1}, l - IC (14)
Qi j+1 Qi j+1
By the same token, K = {0} in icb1[0] and the reconstruction will preserve moments

corresponding to 2°y° = 1 and 2'y° = z. In icbl[1], moments correspond to 2°y! = y and
x'y! = xy will be preserved.

We expected that the order of accuracy of icb schemes in two dimensions is still 3p 4 1,
same as in one dimension. The increase is exactly the enhancement in polynomial order with
respect to the normal direction of the interfaces. Preliminary results from Fourier analysis
show that the order of accuracy is indeed 3p + 1, at least for p = {1,2} (see Table @). The
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Table 4: Results from Fourier analysis in two dimensions

Scheme ooa Taylor-series expansion of A.,,

basic(p=1) 3 —2if — 3—; +0(6°)

35
Lcb1 [0] 4 =2+ s+ 0(8)

: . 36 .
basic(p=2) 5 —2if — 3600 +0(8)

8

60480

icb2[0, 1] 7T =2+ + 0 (B")

two-dimensional stencil for icb scheme remains unchanged from the five-cell stencil of the
basic DG discretization for advection, which is as compact as possible.

IV. Numerical results for the linear scalar advection in one
dimension

To validate the results of Fourier analysis shown in Section [, we solve the scalar linear
one-dimensional advection equation numerically,

Ou + Oyu = 0. (15)

The initial data is a sine wave sin (27z) that is then advected in positive direction at the
unit speed a = 1. The exact solution is Uexact (¢, 2) = sin (27 (z —t)). The simulations
are performed on a unit-length domain that is uniformly divided into N segments. The
numerical approximation is a polynomial of degree p,

ui(z) = ael (@), (16)

a=0

in which the values of the DG coefficients a(® are the solutions of the numerical simulations.

In addition to the basic DG discretization, the advection term is discretized by the cell-
centered full reconstruction (ccf), cell-centered partial reconstruction (ccp), and interface-
centered binary reconstruction (icb). It is then evolved in time by the Runge-Kutta 4-stage
(RK4) time-updating scheme until 7' = 1. The Lo-norms of errors in the numerical solutions,
as well as the corresponding orders of accuracy, are shown in Tables B and B. The ooa of the
cell averages a(®) matches the Fourier-analysis prediction presented in Tables B and B.

It is exciting to note that the errors in a(® and a! from the icb2[0,1] (p = 2) are
smaller than those of ccfl (p = 1), even though the overall stencil of the former has only
9 degrees of freedom while that of the latter contains 10. As explained in Section [, in one
dimension, the stencil of icb comprises only three cells while that of ccf has five cells.
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Table 5: Errors and ooa of the numerical solutions (p = 1) of the scalar linear advection equation in one
dimension.

a1,

N basic ccfl ccpl icb1[0]

2 | 5.65E-1 1.82E-1 4.78E-1 4.89E-1

4 1163E-1 18] 2.83E-3 6.0 4.26E-2 3.5|9.23E-2 24
8 [ 2.72E-2 2.6 | 3.29E-5 64 181E-3 4.6 | 8.22E-3 3.5
16 | 3.67E-3 2.9 | 3.05E-7 6.8 6.18E-5 4.9 | 5.68E-4 3.9
32 | 4.68E-4 3 | 252E-9 69 198E-6 5 | 3.66E-5 4
64 | 5.89E-5 3 | 2.00E-11 7 6.24E-8 5 |231E-6 4

a1,

N basic ccfl ccpl icb1[0]

2 | 5.35E-2 4.79E-2 5.76E-2 2.59E-1
1.48E-1 -1.5| 273E-3 4.1 4.05E-2 0.5]9.11E-2 1.5
8 [ 3.28E-2 2.2 | 406E-5 6.1 2.23E-3 42| 1.02E-2 3.2
16 | 8.80E-3 1.9 | 7.35E-7 5.8 149E-4 3.9 | 1.37E-3 2.9
32 | 2.25E-3 2 1.22E-8 59 954E-6 4 | 1.77E-4 3
64 | 5.67E-4 2 | 1.93E-10 6 6.01E-7 4 | 222E-5 3

V. Conclusions and future developments

We have presented two different approaches to improving accuracy of the DG method
for advection using an upwind flux. Our goal is to match the accuracy level of the recovery-
based DG method, which will be used to discretize the viscous terms of the Navier—Stokes
equations.

In the first approach named cell-centered reconstruction, a unique enhanced representa-
tion is reconstructed for each computational cell. The computation uses data from its two
left and right neighbor cells. Therefore, the stencil for flux calculation is enlarged from 2
cells of the basic DG discretization to 4 cells, leading to a unfavorable five-cell overall stencil.
The order of accuracy for full reconstruction option (ccf) is as high as 4p 4+ 3, and that of
the less-accurate version partial reconstruction (ccp) is 3p + 3 or 3p + 2 for p even or odd.
The former version is the familiar Py Py, method, but the latter is different. Von Neumann
analyses indicate that both options have good stability properties.

Our desire for a compact overall stencil leads to the development of interface-centered
reconstruction approach. The flux-calculation stencil remains two cells and the overall stencil
contains 3 cells, as compact as possible. This approach leads to two distinct families of
schemes: the down-projection reconstruction denoted by icd, and the binary reconstruction
denoted by icb. The most accurate members in both families achieve the order 3p+ 1. This
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order of accuracy is verified numerically for the scalar linear advection in one dimension.
Further numerical experiments with the nonlinear advection equations are planned.

Both families have unfavorable stability properties; the situation of the icd family is
more severe and we deem it is not worthwhile to explore it further. Further in the future,
we will explore options to increase the stability domain of the icb family, e.g., via adding
artificial dissipation, while the order 3p + 1 is preserved.

Multidimensionality does not cause any adverse effect to the icb scheme. The two-
dimensional Fourier analysis shows that the order of accuracy remains unchanged, 3p + 1.
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Table 6: Errors and ooa of the numerical solutions (p = 2) of the scalar linear advection equation in one

dimension.

la®1,
N basic ccf2 ccp2 icb2[0, 1]
2 | 8.18E-2 1.20E-3 9.83E-3 2.54E-2
4 | 4.73E-3 4.1 | 141E-6 9.7 442E-5 7.8| 7.32E4 5.1
8 | 1.80E-4 4.7 | 7.09E-10 11  1.10E-7 8.7 | 6.72E-6 6.8
16 | 5.93E-6 4.9 | 3.70E-13 109 2.28E-10 8.9 | 546E-8 6.9
32 | 1.88E-7 5 | 1.82E-16 11 4.53E-13 9 | 4.31E-10 7
64 | 5.89E-9 5 | 891E-20 11 3.38E-12 7
[l
N basic ccf2 ccp2 icb2[0, 1]
2 | 7.79E-2 7.02E-4 8.84E-3 7.66E-2
4 | 458E-3 4.1 | 1.55E-6 88 5.07E-5 7.4 | 451E4 74
8 | 2.03E-4 45| 1.25E-9 10.3 1.23E-7 87| 7.58E-6 5.9
16 | 1.35E-5 3.9 | 8.36E-13 10.5 5.20E-10 7.9 | 1.25E-7 5.9
32 | 8.67E-7T 4 | 839E-16 10 2.09E-12 8 | 1.99E-9 6
64 | 5.46E-8 4 | 8.25E-19 10 3.13E-11 6
la®1,
N basic ccf2 ccp2 icb2[0, 1]
2 | 1.64E-1 2.78E-3 2.10E-2 6.07E-2
4 | 2.16E-2 29| 514E-6 9.1 1.89E-4 6.8 3.39E-3 4.2
8 | 2.84E-3 29| 1.11E-8 89 1.73E-6 6.8 | 1.06E-4 5
16 | 3.57E-4 3 | 222E-11 9 137E-8 7 | 3.29E-6 5
32 | 446E-5 3 |432E-14 9 1.07E-10 7 | 1.02E-7 5
64 | 5.58E-6 3 | 8.42E-17 9 3.20E-9 5
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