

COPYRIGHT WARNING

This paper is protected by copyright. You are advised to print or download ONE

COPY of this paper for your own private reference, study and research purposes. You

are prohibited having acts infringing upon copyright as stipulated in Laws and

Regulations of Intellectual Property, including, but not limited to, appropriating,

impersonating, publishing, distributing, modifying, altering, mutilating, distorting,

reproducing, duplicating, displaying, communicating, disseminating, making

derivative work, commercializing and converting to other forms the paper and/or any

part of the paper. The acts could be done in actual life and/or via communication

networks and by digital means without permission of copyright holders.

The users shall acknowledge and strictly respect to the copyright. The recitation must

be reasonable and properly. If the users do not agree to all of these terms, do not use

this paper. The users shall be responsible for legal issues if they make any copyright

infringements. Failure to comply with this warning may expose you to:

 Disciplinary action by the Vietnamese-German University.

 Legal action for copyright infringement.

 Heavy legal penalties and consequences shall be applied by the competent

authorities.

The Vietnamese-German University and the authors reserve all their intellectual

property rights.

WIRELESS DC MOTOR CONTROL
USING A MICROCONTROLLER AND
A SUPPLEMENTAL RF
COMMUNICATION MODULE

BACHELOR THESIS
PLACE 2023

Submitted by: VUONG HOANG THIEN TAM

RUB Student ID: 108018207532

VGU Student ID: 9938

Supervisor: Dr. Liu Wai Yip

Co-supervisor: Prof. Dr. xxxxx

WIRELESS DC MOTOR CONTROL USING A

MICROCONTROLLER AND A SUPPLEMENTAL RF

COMMUNICATION MODULE

A Thesis Presented

by

VUONG HOANG THIEN TAM

Submitted to the Department of Mechanical Engineering of the

RUHR – UNIVERSITӒT BOCHUM and VIETNAMESE – GERMAN UNIVERSITY

in partial fulfillment

of the requirement for the degree of

BACHELOR IN MECHANICAL ENGINEERING

March 2023

VUONG HOANG THIEN TAM

MEN2016

WIRELESS DC MOTOR CONTROL USING A

MICROCONTROLLER AND A SUPPLEMENTAL RF

COMMUNICATION MODULE

Approved by:

Supervisor: Dr. LIU WAI YIP

(This page is intentionally left blank)

DISCLAIMER

I hereby declare that the work presented here is part of my Bachelor's thesis, and is the

result of my own independent research conducted under the supervision of Dr. Louis

W.Y. Liu, unless otherwise specified. All data, findings, and conclusions presented in

this work are my original work, and have not been previously published or submitted

for any academic or professional qualification. I take full responsibility for the content

of this work.I confirm that all sources used in the preparation of this work have been

appropriately cited and referenced. Any quotations or excerpts from published or

unpublished works are clearly identified, and the sources of these materials have been

acknowledged. Furthermore, the thoughts, opinions, and recommendations expressed

in this work are solely mine and do not reflect the policies or viewpoints of the

Vietnamese German University, or any other organization or institution. In conclusion,

this work is a genuine and authentic representation of my own research, and I am willing

to defend my research and findings if required.

Vuong Hoang Thien Tam

ABSTRACT

Many robotic control algorithms have been proposed, but hardly any of them focus on

the antenna topology. The significance is no longer placed on how much torque or how

fast a motor may perform, but has instead moved onto how accurately and conveniently

a motor may be controlled. This work aims to implement a wireless control system for

a DC motor that remotely controls its speed and other basic functionalities such as start,

stop, accelerate, and decelerate.

The methodology is described as follows: The hardware comprises a microcontroller

board - Arduino UNO R3 (chip ATmega328p), a DC motor (Hitachi), an H-Bridge

driver, an RF24L01 module, as well as a monopole antenna for communicating at 2.4

GHz. The motor’s direction was controlled by means of an Arduino microcontroller

using Pulse Width Modulation (PWM) together with a PID (Proportional, Integration,

Differentiation) algorithm. Experiments with both wired and wireless setup have been

conducted at the Vietnamese-German University.

Results: The outcome of this experiment has proven beyond any doubt that, using the

present monopole antenna topology, the basic functionalities of the DC motor were able

to be remotely controlled at a maximum distance of 400 meters. In accordance with the

theoretical prediction made by Friis’ formula, we have also found that the transmission

range was changeable by changing the power at the transmitting end. Conclusion:

Overall, this work was successful. The results further suggest that a further increase in

the transmission range is possible if the antenna gain at the transmitting end and/or the

receiving end is increased.

AUTHORSHIP STATEMENT

Family Name, First Name: VUONG HOANG THIEN TAM

Matriculation Number: 9938

Title of Thesis: WIRELESS DC MOTOR CONTROL USING A

MICROCONTROLLER AND A SUPPLEMENTAL RF COMMUNICATION

MODULE

I hereby declare in lieu of an oath that I have produced the aforementioned thesis

independently and without any other means except the aids listed. Any thoughts directly

or indirectly taken from somebody else’s sources are made discernible as such. To date,

the thesis has not been submitted to any other board of examiners in the same or a

similar format and has not been published yet.

Binh Duong, March 28th, 2023

Signature

1

TABLE OF CONTENT

CHAPTER 1 – INTRODUCTION 6

1.1. BACKGROUND 6

1.2. THESIS STRUCTURE 7

1.3. REPORT CONTENT 7

CHAPTER 2 – THEORETICAL REVIEW 9

2.1. DC MOTOR 9

2.1.1. DC MOTOR’S WORKING PRINCIPLE 9

2.1.2. TYPES OF DC MOTOR AND THEIR EQUIVALENT CIRCUITS 11

2.1.3. BRUSHLESS DC MOTOR (BLDC) 15

2.2. PULSE WIDTH MODULATION (PWM) 15

CHAPTER 3 – DESIGN OF A CLOSE-LOOP DC MOTOR CONTROL 18

3.1. PROPOSED SYSTEM 18

3.2. HARDWARE IMPLEMENTATION 19

3.2.1. DC MOTOR 20

3.2.2. OPTICAL ROTARY ENCODER 20

3.2.3. MICROCONTROLLER – ARDUINO UNO R3 24

3.2.4. LM2596 VOLTAGE REGULATOR 26

3.2.5. H-BRIDGE MOTOR DRIVE – BTS 7960 27

3.2.6. LCD 1602 KEYPAD SHIELD 31

3.3. HARDWARE DIAGRAM 33

3.4. WIRING DIAGRAM 33

3.5. SYSTEM LAYOUT DESIGN 35

2

3.6. PROGRAMMING 38

3.6.1. CODE STRUCTURE 38

3.6.2. PULSE WIDTH MODULATION IN ARDUINO 39

3.6.3. TIMER/COUNTER 40

3.6.4. EXTERNAL INTERRUP / PIN CHANGE INTERRUPT 46

3.6.5. PID TUNING 46

3.6.6. PROGRAM FLOWCHART 48

CHAPTER 4 - IMPLEMENTING NRF24L01 2.4GHz RF MODULE FOR

WIRELESS DC MOTOR CONTROL 49

4.1. INTRODUCTION nRF24L01 49

4.2. SYSTEM LAYOUT 51

4.3. EXPERIMENTAL SETUP 52

4.4. PROGRAMMING 53

CHAPTER 5 – EXPERIMENT RESULTS AND DISCUSSION 56

CHAPTER 6 - FEASIBILITY OF EXTENDING THE TRANSMISSION RANGE60

6.1. RELATED FORMULAS 60

CHAPTER 7 – CONCLUSION 63

REFERENCE LIST 64

APPENDIX 1 – MAIN SOFTWARE FOR CLOSE-LOOP CONTROL 67

APPENDIX 2 – TRANSMITTER’S CODE – LCD & KEYPAD 75

APPENDIX 3 – RECEIVER’S CODE – DC MOTOR 79

APPENDIX 4 – CODE SECTION FOR OPEN-LOOP DC MOTOR CONTROL 84

3

LIST OF FIGURES

Figure 1.1: Thesis’ target approach method 7

Figure 2.1: A simple DC motor 10

Figure 2.2: Equivalent circuit of a separately excited motor 11

Figure 2.3: Equivalent circuit for a shunt DC motor 11

Figure 2.4: Shunt DC motor illustration 12

Figure 2.5: Equivalent circuit for a series DC motor 12

Figure 2.6: Series DC motor illustration 13

Figure 2.7: Equivalent circuit for a compound DC motor 13

Figure 2.8: Speed – Torque characteristic 14

Figure 2.9: The averaging effect on the output voltage by PWM technique 16

Figure 3.1: Block diagram of speed control of DC motor 18

Figure 3.2: Optical encoder connected to the motor shaft to detect movements 21

Figure 3.3: A disc associated with an optical incremental encoder 22

Figure 3.4: Encoder working principle for indicating motor speed 23

Figure 3.5: Example on direction determination of rotary encoder 23

Figure 3.6: Arduino UNO R3 layout 24

Figure 3.7: Arduino UNO R3 layout 26

Figure 3.8: BTS 7960 H-Bridge IC driver 28

Figure 3.9: BTS 7960’s heatsink 29

Figure 3.10: BTS 7960 Pin Configuration 29

Figure 3.11: Circuit of resistors designed for the button array 32

Figure 3.12: LCD 16x02 keypad shield in the development platform 32

Figure 3.13: Hardware diagram for controlling the DC motor 33

4

Figure 3.14: System wiring diagram for controlling the DC motor 33

Figure 3.15: System connection testing with a mini breadboard 34

Figure 3.16: System wiring diagram for controlling the DC motor 34

Figure 3.17: Wiring goes under the plastic perforated board 36

Figure 3.18: Fixture for motor 36

Figure 3.19: Brass hexagonal standoff used for several elements 37

Figure 3.20: Finished system layout design for DC motor controlling 37

Figure 3.21: System configuration served for programming structure 38

Figure 3.22: Timer/Counter block diagram 41

Figure 3.23: Example to explain the prescaler’s importance in Timer/Counter 42

Figure 3.24: DC motor control program flowchart 48

Figure 4.1: nRF24L01 module + PA + LNA + detachable antenna 50

Figure 4.2: System Block Diagram 52

Figure 4.3: System’s transceiver 52

Figure 4.4: System’s receiver 53

Figure 5.1: Capacitor was added on (a): supply power source 59

Figure 5.1: Capacitor was added on (b): nRF24L01 modules 59

Figure 6.1. The proposed antenna topology for the transmitting end 62

5

LIST OF TABLES

Table 3.1: DC Motor Specifications 20

Table 3.2: LM2596 Module’s features 27

Table 3.3: BTS 7960 Control Logic 30

Table 3.4: Control Method specifically designed for this pin configuration 31

Table 3.5: Available frequencies for the Arduino PWM pins 39

Table 3.6: Prescaler values and PWM frequencies for an 8-bit counter 43

Table 3.7: TCCR2A Timer 2 Control Register A 43

Table 5.1: Basic Functionality Tests 57

Table 5.2: Transmission Range Test 58

6

CHAPTER 1 – INTRODUCTION

1.1. BACKGROUND

DC motor has a fairly long historical development process and has been dominating the

market in a vast range of applications since its first invention for commercial use in

1886 by American scientist Frank Julian Sprague [1], and still remains the preferred

choice [2] even with the appearance of its "close cousin" – brushless DC motor (BLDC)

one century later in the late 1980s when permanent magnet materials became readily

available [3].

Here at Vietnamese-German University (VGU), a lot of expensive instruments have

been purchased, such as robotic arms and DC motors, but very few of them are remotely

controlled. Even if a small subset of equipment is remotely controllable, almost none

of it is under the direct management or control of the members at VGU. For the first

time, wireless control at VGU involving a special antenna topology became an

undergraduate project.

Receiving such attention, there were numerous experiments that we, the researchers and

students, set out to study and, more importantly, to remotely control DC motor

performance. One of the key aspects of controlling DC motor is using wireless

technology [4]. Being able to control automotive devices from a distance without any

hardware linked in between would allow an unlimited amount of creativity in invention.

This is the source of inspiration for this topic.

7

1.2. THESIS STRUCTURE

The project is broken down into two specific phases that would be followed in an

orderly manner:

• Phase 1: Control and display DC motor speed and direction

• Phase 2: Implement RF module into system achieved from first phase for

wireless control

Even when this topic is neither original nor complicated, as demonstrated in some

related work [4] and [5], it deserves a proper approach structure.

Figure 1.1: Thesis’ target approach method

1.3. REPORT CONTENT

The thesis report comprises of following contents:

• Chapter 1 is used for introduction, where the problem statement is defined along

with a brief overview of the thesis structure.

8

• Chapter 2 constructs a theoretical framework as foundation of the project,

including operating principle of DC motor, related formulas; PWM and PID

control methods’ basic ideas.

• Chapters 3 and 4 describe the implementation of the research, where the former

pays attention to Phase 1 (Close-loop DC Motor Control) and the latter focuses

on Phase 2 (Wireless DC Motor Control), which is also the main study goal of

this thesis.

• Chapters 5 and 6 discuss the achieved results while considering the feasibility

of further improvement by enhancing the transmission range.

• Chapter 7 concludes what has been done in this work.

9

CHAPTER 2 – THEORETICAL REVIEW

2.1. DC MOTOR

In present day, with the fast-paced of technological growth, the traditional DC motor is

still widely used in many fields – from household appliances to industrial electrical

equipment, especially in the lower power range.

2.1.1. DC MOTOR’S WORKING PRINCIPLE

DC motor, or Direct Current motor, works on a simple mechanism to converts electrical

energy into mechanical energy, which is the magnetic effect of current. This effect can

simply be described as:

Electric current passes through a coil, initiating a magnetic field. With magnets, similar

magnetic poles repel while opposite magnetic poles attract each other. Thus when the

field is excited and current is supplied to armature, these repulsive or attractive forces

combine, tend to drive the coil of the motor to rotate [6].

Every DC motor has two main parts. The fixed part is called the stator (often a

permanent magnet) and the rotating part is called the rotor (armature). The armature

consists of a pair of commutator rings and brushes. These parts generates magnetic

fields, which interact and make the motor spins.

As direct current flows from negative to positive through the wire coil, it creates an

electromagnetic force going up and the coil spins towards the magnet. The commutator

part that connects with the power source of opposite polarity acts as a switch for

alternately flipping the poles. Without the commutator rings, the coil always has the

same polarity and is unable to spin since it is just attracted to one of the magnets. Thus,

motors are designed with a conductive ring – the commutator – around the motor shaft.

10

Current is transferred from the power source to the commutator through stationary

brushes. They are made of soft conductive material that presses against the commutator.

As the rotor turns, different segments of the commutator touch the brushes and change

the direction of current through the coil as well as its polarity. This happens repeatedly

and results in continuous rotation of the motor.

Manufactured motors are designed to enhance rotation performance by using multiple

windings with separate commutator pair for each loop. This design overcomes the

shortcoming of irregular motion observed at simple DC motor, which caused by the

zero torque when the coil is nearly perpendicular to the magnetic flux. This arrangement

allows multiple points of force that are attracting and repelling, causing the motor to

spin more stable and smoother.

In a practical motor, especially a large one, an electromagnet is preferrable for stator

part than permanent magnet.

Figure 2.1: A simple DC motor (hand-drawn by the author)

11

2.1.2. TYPES OF DC MOTOR AND THEIR EQUIVALENT CIRCUITS

Direct current motor constructions can be classified into four groups based on the

arrangement of their field windings [7], e.g., how the field coils is connected to the

rotor windings:

1. Separately excited motor: the field windings and armature circuits are excited

by separate sources [7]. Most often, the field circuit is a permanent magnet for

small motors, thus the flux of the field cannot be adjusted.

Figure 2.2: Equivalent circuit of a separately excited motor (hand-drawn by the author)

2. Shunt motor: The current I of the source is calculated by: I = Ia + If

Figure 2.3: Equivalent circuit for a shunt DC motor (hand-drawn by the author)

12

Figure 2.4: Shunt DC motor illustration (hand-drawn by the author)

3. Series DC motor: Series DC motor may carry a much larger current than the shunt

field winding because the current of the series winding is equal to the armature

current while the current of the shunt winding is: If=
Vt
Rf

 , which is the supply voltage

divided by the field resistance [7].

Figure 2.5: Equivalent circuit for a series DC motor (hand-drawn by the author)

13

Figure 2.6: Series DC motor illustration (hand-drawn by the author)

4. Compound DC motor: as its name suggests, a compound DC motor is composed

of both shunt and series windings in its design. The more widely used

configuration is called the cumulative compound.

Figure 2.7: Equivalent circuit for a compound DC motor (hand-drawn by the author)

The performance of a DC motor is presented by the three important characteristics,

given by the relation among the armature current, torque and speed. Those are torque

14

and armature current characteristic; speed and armature current characteristic; and

speed and torque characteristic – this is also often referred as mechanical characteristic

of a DC motor [8].

The mechanical characteristic of three DC motor types is plotted for comparative

purpose:

Figure 2.8: Speed – Torque characteristic of Shunt, Series and Compound DC

motors (Measurements done by the author)

To conclude, the shunt DC motor has a low starting torque but it allows constant and

stable speed irrespective of the load acting on the motor. The series DC motor has

considerably high starting torque compared to the shunt DC motor. The speed of series

DC motor when not connected to a mechanical load is excessively high that it may

damage the motor due to excessive centrifugal forces exerted on the rotor. However,

the speed drops rapidly with increasing load. For the compound DC motor, its

characteristic lies in between of the shunt and series DC motor, e.g., its speed also

decreases with load but not as drastically as series motor and it may develop large torque

15

nearly similar to series DC motor. At no-load condition, compound DC motor runs at

more stable speed than series DC motor [8].

In short, depending on the purpose of use, field winding configuration will be decided.

Series DC motor is good for high torque low speed while Shunt DC motor produces

high speed low torque and Compound DC motor has a balanced performance that gives

steady speed with acceptable torque.

2.1.3. BRUSHLESS DC MOTOR (BLDC)

Nowadays, along with the discovery of semiconductors and the invention of solid-state

electronics came the development of brushless motors, brushed DC motors are being

phased out and less popular than it used to be. However, they are still useful and can be

found in a wide range of applications.

Brushed DC motors require low cost of construction. They are considerably simple and

inexpensive to control. Brushed motors also benefit from high flexibility, e.g., they can

be used in certain extreme environment since there is no concern for any electronics to

malfunction. For brushed DC motors, the commutation is crucial to keep the rotor

spinning by continuously switching the polarity of the current in the coil windings. This

commutation process is done mechanically where the brushes come in contact with the

commutator of the rotor. Due to this physical contact, the brushes wear out over thus

make the motor performance less efficient [3], the brushes can still be maintained

periodically or rebuildable to extend the lifetime of the motor, which is lower in cost

compared to the brushless DC motors in certain cases.

2.2. PULSE WIDTH MODULATION (PWM)

Ideally, DC motor control of varying speed is done by varying the DC voltage supplied,

however, that is not the case in reality. One common technique called Pulse Width

16

Modulation (PWM) may be implemented to adjust the voltage fed to the motor. Its

target is to generate a waveform as trains of switched pulses to achieve an averaged

output [9].

The idea behind this technique is to keep switching on and off the supplied voltage at a

fast rate in order to achieve an average value of voltage . Duty cycle is the term used to

described the average power, which means the lower the duty cycle, the lower the

power. Duty cycle is expressed in percent, with 0 percent corresponds to being fully off

and 100 percent means on all the time [9]. Duty cycle can be expressed mathematically

as follow:

Duty Cycle =
TON

TON + TOFF
× 100% ; [9]

where TON is the time-on and TOFF is the time-off of the electrical signal.

Figure 2.9: The averaging effect on the output voltage by PWM technique (hand-

drawn by the author)

17

Most of the time, the PWM signal is a rectangular wave that repeats itself. PWM’s result

is not always an averaged voltage. Its output may be disturbed with noticeable ripples

as the consequence of trying to follow the expected rectangular wave shape. This

happens when the duration of TON + TOFF is considerably long. This will lead to

irregular motion and the motor will alternatingly speed up and slow down. Solution

given is to increase the switching frequency until motor performance is acceptably

smooth. However, even with efficient frequency, ripples still occur due to the switching

nature of PWM [10].

18

CHAPTER 3 – DESIGN OF A CLOSE-LOOP DC

MOTOR CONTROL

3.1. PROPOSED SYSTEM

Figure 3.1: Block diagram of speed control of DC motor using Arduino UNO R3

(ATmega328P) (Created by the author at Vietnamese German Univerity)

Figure 3.1 shows the block level representation of this system.

Since the Arduino board supply current is only about 40mA, which is not sufficient

enough to power most motors directly, the microcontroller and the DC motor will share

one mutual power supply of 24V. Thus, a step-down voltage regulator is used for the

microcontroller. It takes input voltage of supply power source and reduce them to a

lower fixed output voltage (5V for Arduino) that the board can consume without getting

harm.

19

The Arduino UNO has in total three power pins for powering other components, one

has a supply voltage of 3.3V and two pins provide 5V. These two 5V pins will supply

the H-bridge amplifier and the LCD.

The DC motor is equipped with an optical rotary encoder. The actual motor speed is

recorded thanks to the encoder in a form of binary values that the microcontroller

interprets. The microcontroller will then execute a set of calculations to determine the

Pulse Width Modulation (PWM). This PWM signal will either accelerate or decelerate

the rotating speed through the H-bridge driver to reach or maintain the desired speed.

The system information (set speed and actual speed – positive value for clockwise

direction and negative value for counter-clockwise direction) is displayed using a 16x02

LCD. The keypad provides a commander for simple system setting such as power

ON/OFF, system reset, increase and decrease motor speed.

Following criteria are to be taken into consideration while designing the system:

• Effectively adjust the desired motor speed and direction

• Use keypad to command: Start/Stop, System reset, Speed increase, Speed

decrease

• Accurately display system data

3.2. HARDWARE IMPLEMENTATION

This section discusses about hardware components that included in the project:

• Power supply: power supply 24V DC 5A

• Step-down voltage regulator module: LM2596

• Microcontroller: Arduino UNO R3 (ATmega328p)

20

• H-Bridge Amplifier: BTS 7960

• DC motor: Hitachi motor series, equipped with an optical rotary encoder

• LCD 16X02 keypad shield (connect with the microcontroller via screw shield)

The aim of this first phase of the project is to control the speed of the DC motor using

Arduino UNO R3. As far as the hardware implementation is concerned, it is designed

for close loop operation.

3.2.1. DC MOTOR

The DC motor used in this project is a brushed series DC motor. Specific characteristics

of this motor is shown in Table 3.1.

Table 3.1: DC Motor Specifications (Data taken from the datasheet with author’s

modification)

3.2.2. OPTICAL ROTARY ENCODER

In this system, the encoder is mechanically attached to the motor shaft so that its output

signal will monitor and change as the rotor moves (Figure 3.2).

Rotary encoder is a device that reads and translates the rotational information in suitable

binary representation that the microcontroller may interpret. There are multiple

21

technologies used for encoding the rotational displacement, for example, an optical

encoder detects light and a magnetic encoder detects a magnetic field distribution, but

the most famous and widely used encoders utilize optical means because its reliability,

robustness and inexpensive cost surpasses the advantages offered by any other

technology [11].

Figure 3.2: Optical encoder connected to the motor shaft to detect movements

(Photo taken for this thesis project)

Rotary optical encoders are classified into two types: absolute or incremental encoders,

which describes the desired signal output for the encoders.

This particular encoder used in this system is an incremental one (Figure 3.3). It is

mounted on a shaft which is the rotating part and thus will be able to generate

incremental data in the form of digital pulses. It measures the instantaneous angular

position relative to some arbitrary datum point but unable to give the absolute position

22

[12]. This means the microcontroller may calculate – based on the received signal –

how much the shaft has rotated since the rotational data has been started recording.

Figure 3.3: A disc associated with an optical incremental encoder (Photo taken for

this thesis project)

The optical encoder consists of three elements: one is an emitter, which is a light source,

generally infrared LED; one is a detector, which is a phototransistor; and a disc in a

shape of a wheel with slits in a specific pattern. These slits are designed to be able to

prevent or let light pass through.

The resolution of an optical encoder is based on the number of slits on the disc.

Therefore, the higher the slits, the higher resolution achieved. Here the encoder

resolution is 240 P/R (Pulse per Rotation).

Principle of operation: When the phototransistor detects appearance of light, it returns

value of “HIGH” or 1. Otherwise, when there is no light passed through, the output goes

“LOW” or 0. By counting these pulses, the microcontroller may determine the

23

displacement of the motor shaft and thus, indicate motor speed by timing the frequency

of these pulses.

Figure 3.4: Encoder working principle for indicating motor speed (hand-sketched by

the author)

Furthermore, the encoder is able to detect not only the speed but also the direction of

rotation by installing two tracks that are coded 90 electrical degrees offset. These two

tracks are usually denoted as Channel A (Phase A) and Channel B (Phase B). The

direction is then determined based on the relationship between Phase A and Phase B.

Figure 3.5: Example on direction determination of rotary encoder (hand-sketched by

the author)

24

With the configuration like Figure 3.5, when the disc is rotating counterclockwise, the

material will block light received by phase A first and phase B. Then, as a result,

channel A reaches low state before channel B. Similar explanation takes place when the

disc rotates clockwise, which means channel B is leading channel A. This type of

configuration is known as quadrature encoder.

For higher resolution, it is possible to let the controller counter to take in account the

number of rising and falling edges of pulses generated by one channel or even both of

two channels.

3.2.3. MICROCONTROLLER – ARDUINO UNO R3

Figure 3.6: Arduino UNO R3 layout (Photo taken by the author for this thesis project at

Vietnamese German University)

There are multiple Arduino board types. This project employs the UNO R3 version

whose host processor is the Atmel Atmega328P.

25

It is a low-power, high performance microcontroller. The “Atmega328” implies that it

is an 8-bit microcontroller with 32KB of integrated Flash memory, “P” simply denotes

that it needs less power than its predecessors. It also has 2KB of SRAM (Static Random

Access Memory) and 1KB of EEPROM (Electrically Erasable Programmable Read-

Only Memory). This MCU operates due to a crystal of 16MHz on the UNO board [14].

When being activated, the current consumption is 0.2Ma.

The Arduino UNO has a resettable polyfuse to prevent the board from drawing too much

power through the computer’s USB that may be resulted in shorts and overcurrent. Once

that happens, the fuse will automatically break the connection until the case is solved.

Up to now, the UNO board is considered to be the most popular version due to its

powerful performance, high flexibility (for example, built-in USB interface) and cost-

effective solution, thus make it one of the easiest-to-use Arduino board. This statement

can be proved due to the fact that all Arduino shields ever made are compatible with

the UNO.

The processor is equipped with a wide variety of features [15]. This project utilizes and

focuses on its memory system, port system, timer system, Analog-to-Digital converter

(ADC), interrupt system, and the Serial communication system.

Arduino has its own development board allowing users to program and burn through

Arduino IDE (Integrated Development Environment). The original Arduino

programming language is based on C++. However, it is possible to code in Python or

any other high-level programming language. Simply put, it can be sketched using any

programming language as it is developed into binary code by the compiler. The code is

initially saved as a piece of text and then converted into machine code and resulted in

a single hex file [14].

26

3.2.4. LM2596 VOLTAGE REGULATOR

The power source in this design is a honeycomb mesh power supply of 24V, 5 amperes,

which is connected to a voltage regulator module (or buck converter) LM2596. This

LM2596 drops the power voltage to nearly 6V before passing it to the Arduino board.

Its output voltage can be adjusted by turning the potentiometer on the module.

Besides voltage-step-down purpose, the module is also served for protection of the

microcontroller. Leakage of AC voltages in Mv is enough to damage the

microcontroller. In order to avoid this kind of situation, a smooth and stable DC voltage

is required. This can be approached by implanting a DC-to-DC buck converter, in this

project, the LM2596, to ensure a supply DC voltage with negligible ripples to the

electronic circuit components, especially the Arduino board.

The LM2596 series operates at a 150 kHz switching frequency, thus it is able to filter

components of smaller sizes than would be expected with lower frequency switching

regulators [16].

Figure 3.7: Arduino UNO R3 layout (Photo taken by the author for this thesis project)

27

Features:

Table 3.2: LM2596 Module’s features

3.2.5. H-BRIDGE MOTOR DRIVE – BTS 7960

There is a wide range of options when considering components to drive the motor, it is

often more convenient and easier to use an H-bridge driver in the form of IC (Integrated

Circuit). Nowadays, many manufactures offer fully integrated H-bridge circuits that can

control high-power motors without additional external components. Furthermore, it also

prevents short circuit which could arise if switches are directly controlled.

Along with that, there are three DC motor specifications that need to be taken into

account when selecting the suitable motor driver:

1 – Operating voltage: driver should be able to comfortably handle this voltage.

2 – Average current: the amount of current that the motor consumes under normal load

condition.

3 – Stall current: motor driver needs to have a peak current that is capable of handling

current which motor would draw when starting from rest or in such situation that its

shaft is held in place and rotor is forced to stop.

BTS 7960 H-bridge IC driver, also known as the IBT2, is utilized in this project (Figure

3.8).

28

Figure 3.8: BTS 7960 H-Bridge IC driver (Photo taken by the author for this thesis

project).

It is a powerful fully integrated high-current H-bridge designed to provide bidirectional

motion controlling. This board is composed of 2 half-bridges and supports a current up

to 43A under a voltage between 5.5V – 27V. It is built using a multi-technology process

which combines one p-channel highside MOSFET and one n-channel lowside MOSFET

[17].

This IC is featured with protection such as [18]:

• Overvoltage Lock Out: if the supply voltage exceeds the permitted voltage level,

the IC will shut the lowside MOSFET off and turn the highside MOSFET on,

which will lead to freewheeling in highside during over voltage.

• Undervoltage Shut Down: to avoid uncontrolled motion of motor: if the supply

voltage drops under 5.4V, the driver will switch off and unable to be back on

until voltage reaches 5.5V.

29

• Overtemperature Protection: the BTS 7960 has an integrated temperature

sensor that protects against overtemperature by shutting down of both output

stages. Furthermore, it is also equipped with a heatsink to reduce dissipating heat

due to its large current (Figure 3.9).

• Short Circuit Protection: is triggered by a combination of current limitation and

overtemperature shut down.

Figure 3.9: BTS 7960’s heatsink (photo taken by the author at Vietnamese German

University)

Figure 3.10: BTS 7960 Pin Configuration (Photo taken by the author at Vietnamese

German University)

30

Table 3.3: BTS 7960 Control Logic (Photo taken by the author at Vietnamese German

University)

Table 3.3 shows the BTS 7960 control logic.

The lowside and highside braking output is realized by current limitation feature offered

by the IC manufacturer to protect the module from short circuit [18]. Braking is a term

used when the motor is rapidly slowing down by short-circuiting its two terminals,

which make the motor much harder to turn thanks to an effect called electrodynamic

braking [19].

There are four inputs to the module: LPWM; RPWM; L_EN; R_EN where the left and

right enable pins refer to the left and right half bridges. This configuration shorts R_EN

and L_EN together to avoid damaging the module by mistakenly set their values both

HIGH. The reason for enabling one side is to fix the motor rotation direction. The

combined enable pin is used as a HIGH/LOW signal or PWM signal to either enable or

disable or control speed of the whole module and motor. Therefore, the LPWM and

RPWM input pins directly control the direction state of outputs. The combined PWM

pin is used for PWM control of the motor.

This IC can be interfaced directly to the microcontroller board [18].

31

Table 3.4: Control Method specifically designed for this pin configuration (table

taken from {18] with author’s modification)

3.2.6. LCD 1602 KEYPAD SHIELD

This module is a combination of a two-lines-six-teen-characters LCD display and an

array button of five that shield on top of the Arduino board, which save space and make

a neat development platform.

For programming, the LCD display element uses the same library for the “traditional”

LCD 16x02 module, which is LiquidCrystal library available in Arduino IDE. The

keypad on this shield includes a total of six keys where five of them is programmable.

The right-most button labelled RST is mapped directly to the RST button on the

Arduino, whose function is to reset the board. The other five buttons are mapped to

analog pin A0 on Arduino. They are assigned different values ranging from 0 to 1023

and will function depending on which value is written, in other words, on which button

is pressed. This is achieved by a circuit of resistors connected as illustrated (Figure

3.11); and pin A0 measures the potential value to call the function.

32

Figure 3.11: Circuit of resistors designed for the button array (diagram hand-sketched

by the author at Vietnamese German University)

Figure 3.12: LCD 16x02 keypad shield in the development platform (Photo taken by

the author at Vietnamese German University)

33

3.3. HARDWARE DIAGRAM

Figure 3.13: Hardware diagram for controlling the DC motor (Photo taken by the

author at Vietnamese German University)

3.4. WIRING DIAGRAM

Figure 3.14: System wiring diagram for controlling the DC motor (Photo taken by the

author at Vietnamese German University)

34

Figure 3.15: System connection testing with a mini breadboard (Photo taken by the

author at Vietnamese German University)

Figure 3.16: System wiring diagram for controlling the DC motor (Photo taken by the

author at Vietnamese German University)

35

The screw shield extends the amount of pins of the Arduino by providing additional

soldering pins. The term “shield” in Arduino convention refers to adding external

hardware modules using the daughter card concept. This allows the Arduino board to

act like a motherboard, providing electrical connection to the extra circuitry. This screw

shield makes it convenient to stack the LCD Keypad on the Arduino board and is

resulted in a less wiring work required.

3.5. SYSTEM LAYOUT DESIGN

Following criteria are to be taken into consideration when designing the layout for

controlling the DC motor:

• Safely secure all connection by soldering where possible, thus utilization of

breadboard is eliminated due to its instability.

• Make the model readily portable.

• Create the motor body fixture.

• Shock absorber for the motor when operating.

• Enhance neatness and aesthetics.

Most often, electronic project is suggested to be assembled on a PCB (Printed Circuit

Board). However, PCB has its disadvantages as impeding circuit alterations, and the

motor cannot be constructed on the board. Therefore, this project employs the plastic

perforated sheet, which is inexpensive and easy to manipulate. It is made of

polypropylene – a soft material that is flexible with a relatively low melting point, thus

make it effortless to create holes onto for wiring and no need to drill through. This sheet

permits rapid assembly and capability to alter the circuit as the wiring may be done

underneath it. It also eliminates the chances of wires get tangled when transporting.

36

Figure 3.17: Wiring goes under the plastic perforated board (Photo taken by the author

at Vietnamese German University)

Motor is fixed using nylon cable tie and five eye bolt fasteners, three on one side and

two for other sides. Also, there are three layers of leather cloth placed beneath the motor

for shock absorbing.

Figure 3.18: Fixture for motor (Photo taken by the author at Vietnamese German University)

These hexagonal-shaped threaded standoffs (Figure 3.19) are used to set distance

between components as well as to elevate the component from the plastic perforated

sheet, especially component like the BTS 7960 driver with its heatsink. The purpose is

to increase the space for airflow around these hardware modules because when

operating, they may become hot.

37

Figure 3.19: Brass hexagonal standoff used for several elements (Photo taken by the

author at Vietnamese German University)

Figure 3.20: Finished system layout design for DC motor controlling (Photo taken by

the author at Vietnamese German University)

38

3.6. PROGRAMMING

3.6.1. CODE STRUCTURE

Figure 3.21: System configuration served for programming structure (diagram

hand sketched by the author at Vietnamese German University)

The specific goal of this program is to create a close-loop (or feedback-control) system

where the Arduino controller continuously calculates the PWM value to adjust the

rotating speed based on the error between encoder feedback and target speed, then sends

signal to the H-Bridge amplifier to control the motor as desired. Therefore, the

programming is featured with:

• Pulse Width Modulation (PWM) Control

• Proportional, Integral, Derivative (PID) Algorithm

• Timer Interrupt

• External Interrupt (Pin Change Interrupt)

39

3.6.2. PULSE WIDTH MODULATION IN ARDUINO

Referring to Arduino UNO R3, Pulse Width Modulation (PWM) is a technique for

converting from digital sources to analog output. PWM – a signal switched between on

and off – is produced by using digital control. This on-off pattern can simulate voltages

ranging from the full voltage of the Arduino board (5V) to off state (0V) by changing

the duty cycle. With a frequency of 1kHz, there are 1000 PWM cycles per second which

makes each cycle last for 1 millisecond. During each of these one-millisecond-cycle,

the signal can be high part of time and low the rest of the cycle time.

The duty cycle is requested by an analogWrite(PWM_pin, dutyCycle) call, where

dutyCycle is a value ranging from 0 to 255, with 0 mapping to an off state, 127

requesting a 50% duty cycle and 255 being always on; and PWM_pin is one of the PWM

pins – pins denoted with a sign (~). These PWM pins on Arduino UNO R3 are pin 3, 5,

6, 9, 10 and 11. If values above 255 or below 0 is written to a PWM pin, erratic and

unwanted behavior may occur [20].

Table 3.5: Available frequencies for the Arduino PWM pins (taken from datasheet with

the author’s modification)

40

The most common and easiest way to adjust PWM is varying the duty cycle and holding

frequency at default set value. One of the reason why this method is preferred for

controlling the motor speed is that no heat is wasted during the switching process.

However, the frequency can be manually changed from 30Hz up to 62kHz by timer

prescaler utilization (Table 3.5). The set frequency must be carefully chosen since too

low the frequency will result in a rough performance and a “whine” noise from motor

but too high the frequency will lead to unwanted side effects. As the frequency

increases, the length of the switching cycle is subsequently decreased. For a short cycle,

the output does not have enough time to completely reach high or low state, instead, it

is stuck in somewhere between on and off state, which will generate excess heat in the

system. This is called a shoot-through state [21].

The program listing of a function generated for an open-loop control system that

implementing PWM technique is shown in Appendix 4.

3.6.3. TIMER/COUNTER

The analogWrite() command is the simplest method when using PWM technique

but it is limited by a set frequencies for each PWM pins. According to the

ATmega328p’s datasheet, the Arduino is set up with two fixed PWM frequencies, the

frequency of the PWM signal on most pins is approximately 490Hz and 980Hz on pins

5 and 6. By manipulating the chip’s timer register directly, more control may be gained

than the analogWrite() command provides.

Basically, timer is a binary counter, works by incrementing a counter variable known

as a counter register. The counter can be configured to count clock pulses

(internal/external) until it reaches the maximum value, at which point the counter

overflows, generates the interrupt if enable then resets back to zero and started counting

from the beginning again.

41

Figure 3.22: Timer/Counter block diagram

The interrupt can be triggered by defining an Interrupt Service Routine (ISR).

The timer counts thanks to the clock source that each timer’s increment takes one time

pulse as its unit. If a 1MHz clock signal is provided to a timer, timer resolution is

calculated as follow:

T =
1
f

 =
1

1MHz
 =

1
1×106Hz

 = 1×10-6s

Where T is increment unit (time it’s take for one “tick”) and f is clock frequency.

The ATmega328p chip has three PWM timers, controlling 6 PWM outputs, named

TIMER 0, TIMER 1, TIMER 2 [14].

TIMER 0

Timer 0 is an 8-bit timer, makes its counter register capable of counting up to 255.

Timer 0 is also the clock source used by basic Arduino functions such as delay() and

millis(). It is suggested to not use advanced PWM control technique on this Timer

because it may interfere other irrelevant functions and resulted in unexpected

consequences.

TIMER 1

Timer 1 is a 16-bit timer, thus its maximum counter register value is 65535.

42

TIMER 2

Timer 2 is an 8-bit timer which is fairly similar to Timer 0 but has a different set of

prescale values from the other timers.

Each timer has two outputs, when the timer reaches the compare register value, the

corresponding output is toggled [22].

Prescaler is an important key element involved when considering using Timer system.

Figure 3.23 illustrates why prescaler is often needed.

Figure 3.23: Example to explain the prescaler’s importance in Timer/Counter

(Diagram hand sketched by the author at Vietnamese German University)

Therefore, with presence of prescaler, instead of incrementing every cycle, now it

increments every 8 cycles (or 64 cycles, 256 cycles, 1024 cycles, dependent on prescaler

mode registered).

43

Prescaler Fast PWM Frequency Fast PWM Period
(in microsecond)

1 62.5kHz 16

8 7.8kHz 128

32 1.9kHz 512

64 976Hz 1024

128 488Hz 2048

256 244Hz 4096

1024 61Hz 16384

Table 3.6: Prescaler values and PWM frequencies for an 8-bit counter (taken from the

datasheet with the author’s modification)

This system focuses on Timer 2, which allows generating Output Compare Match and

Overflow interrupts. For Output Compare Match enablement, OCIE2B and OCIEA2

bits are used. For Overflow interrupt enablement, TOIE2 bit is used [14].

For timer configuring, there are built-in registers available on the AVR chip. Two of

these registers store setup values. They are TCCRxA and TCCRxB, where x is the timer

number, for example, TCCR2A and TCCR2B. TCCR stands for Timer/Counter Control

Register. All the bits in TCCR2A register are set to 0 [14].

Table 3.7: TCCR2A Timer 2 Control Register A (taken from the datasheet with the

author’s modification).

44

For TCCR2B, the first three bits are used to set prescaler value, those are CS20, CS21

and CS22.

Table 3.8: TCCR2B Timer 2 Control Register B (taken from the datasheet with the

author’s modification)

Table 3.9 shows the bits of CS22, CS21 and CS20 registration for a specific prescaler

value [14]:

Table 3.9: TCCR2B Timer 2 Control Register B (taken from the datasheet with the

author’s modification).

There are various ways to select the prescaler. Below (Figure 3.24) is an example for

setting a 256 prescaler with Timer 1.

45

Figure 3.24: Register for a 256 prescaler of Timer 1 (Data compiled by the author)

Values to be loaded into the reload timer is set based on the designing goal. For Timer

2, the amount of pulses generated by the optical rotary encoder is designed to be counted

every 1 milliseconds. Assuming prescaler of 1024 is used.

Following steps are taken:

Calculate the period of the timer clock using:

Tclock =
1

ftimer

Where ftimer is the frequency of the clock used for the timer, with a prescaler of 1024,

ftimer is:

ftimer =
16MHz
1024

 =
16×106Hz

1024
 = 15625Hz

Thus,

46

Tclock =
1

ftimer
=

1
15625Hz

= 6.4×10-5s

Determine number of needed clocks by dividing the desired time interval by Tclock.

Number of needed clocks =
1ms
Tclock

 =
0.001s

6.4×10-5s
 = 15.625 ≈ 16 (whole number)

Perform 256 − n, where n is the decimal value achieved in Step 2.

256 − 16 = 240

Convert the result of Step 3 to hex, this hex value is the reload timer value that will be

used in the program.

240 in hex is: 0xF0

Thus, OCR2A bit will be set to 0xF0.

3.6.4. EXTERNAL INTERRUP / PIN CHANGE INTERRUPT

The ATmega328P microcontroller has only two pins that enable external interrupt,

which are pins 2 and 3. Therefore, the encoder pins are defined by these pins. The

amount of pulses recorded by the encoder is read using a pin change interrupt. For

every time channel A gets a rising edge, the program trigger a function to increment the

position, that function is attached in the form of an interrupt. To determine the direction,

the position-recording variable will be increment positively by 1 if output B is HIGH

(by the time the interrupt being triggered), otherwise, that variable will be subtracted

by 1 if output B is LOW.

3.6.5. PID TUNING

The gains of P, I, and D need to be adjusted differently to each system because there is

no conventional set of specific values for this tuning. Manual tuning of the gains is the

47

simplest method with considerably effective results. This method is utilized in this

project, following a general procedure.

• First set 𝐾𝐾𝑖𝑖 and 𝐾𝐾𝑑𝑑 values to zero.

• Increase the 𝐾𝐾𝑝𝑝 until the motor output oscillates, then set 𝐾𝐾𝑝𝑝 to approximately

half of the oscillating value.

• Increase 𝐾𝐾𝑖𝑖 until the motor reaches target speed in desired time. If motor get

instable, decrease 𝐾𝐾𝑖𝑖 for a small amount because too much 𝐾𝐾𝑖𝑖 will cause

instability.

• Finally, increase 𝐾𝐾𝑑𝑑 until the motor speed is acceptably quick to reach its set

target. However, too much 𝐾𝐾𝑑𝑑 will cause excessive response and overshoot, thus

it needs to be adjusted slowly.

The P, I, D gains achieved after the manual tuning are:

𝐾𝐾𝑝𝑝 = 0.1;

𝐾𝐾𝑖𝑖 = 0.08;

𝐾𝐾𝑑𝑑 = 0.0005

48

3.6.6. PROGRAM FLOWCHART

Figure 3.24: DC motor control program flowchart

49

CHAPTER 4 - IMPLEMENTING NRF24L01 2.4GHz

RF MODULE FOR WIRELESS DC MOTOR

CONTROL

4.1. INTRODUCTION nRF24L01

The concept of wireless transmission in technology refers to transmission of signals

between two or more devices in space without any physical link established between

them. Wireless signals are spread in waves form and are characterized by their

amplitude and frequency. Signals are sent either by using radio waves or by beams of

infrared light.

Radio waves have many advantages over beam of infrared light. While infrared light

cannot penetrate through solid objects under any circumstances, radio waves can travel

through obstacles at low frequency. In nature, radio waves can travel in every direction

and infrared waves are unidirectional. However, radio waves still have disadvantages

as: incapability of transmitting a lot of data simultaneously due to low frequency (3kHz

to 1GHz) and it offers a poor security. But in general, they do meet the needs for an

Arduino project.

Principle of transmitting radio signals: At the beginning, the data is converted, or

modulated, into its equivalent electrical signal. This signal, called a carrier wave,

contains the complete information that needs to be transmitted. The transmitting

antenna receives this signal and radiates it into open space. (At this point, any receiver

whose frequency matched within this range will be able to access the data. This explains

why radio waves transmitting is poorly secured.) On the receiving end, the data carried

by the wave is demodulated, or extracted into original information.

50

This system uses two nRF24L01 modules to communicate between the transmitter –

LCD and Keypad and the receiver – DC motor in order to wirelessly control DC motor

speed and receive motor information simultaneously.

 NRF24L01 is a wireless transceiver module manufactured by Nordic Semiconductors.

They are available in several types, varies in configuration of antenna– built-in type or

with external antenna. The version used in this project is the variation with SMA (Sub-

Miniature version A) connector that allows an attachment of a duck antenna for better

transmission range – in an ideal condition, transmission range may be up to 1000 meters

and averaged in 700 meters, depending on location, atmosphere and presence of

obstacles.

In addition to the detachable antenna, it is packed with PA (Power Amplifier) and LNA

(Low-Noise Amplifier). The PA enhances the signal power transmitted while the LNA

extends weak signals from the transmitter to a better standard.

Figure 4.1: nRF24L01 module + PA + LNA + detachable antenna (Photo taken by the

author at Vietnamese German University)

It operates on 2.4 GHz band which is allowed for unlicensed use in almost all regions

[23].

51

Features:

Frequency range: 2.4 GHz

Operating voltage: 3.3V DC

Logic input: 5V tolerant

Maximum operating current: 45mA

Communication interface: SPI (Serial Peripheral Interface). This is a standard bus used

to communicate between Arduino microcontroller and many other peripheral ICs

(Integrated Circuit). The SPI uses the concept of Master and Slave where, most often,

the Arduino is the Master and the nRF24L01 is the Slave. Communication between

Master and Slave is bidirectional that means they can both transmit and receive at the

same time.

Data rates: 250 kbps/ 1 Mbps / 2 Mbps

Communication range: 1000 meters (ideal condition)

4.2. SYSTEM LAYOUT

The project includes two Arduino microcontrollers and two nRF24L01 modules to build

up a system of one transceiver (controller) and one receiver (DC motor).

Illustrated below is a simple block diagram designed for this system (Figure 4.2).

52

Figure 4.2: System Block Diagram

4.3. EXPERIMENTAL SETUP

Figure 4.3: System’s transceiver (Photo taken by the author at Vietnamese German

University)

53

Figure 4.4: System’s receiver (Photo taken by the author at Vietnamese German University)

4.4. PROGRAMMING

This sections focuses on programming the nRF2401 modules for the system’s

transceiver and receiver.

TRANSCEIVER – COMMANDER RECEIVER – DC MOTOR

//Pin Configuration //Pin Configuration

//SCK 13 //SCK 13

//MISO 12 //MISO 12

//MOSI 11 //MOSI 11

//CE 2 //CE 4

//SCN 3 //SCN 5

54

Pin functions:

SCK – Serial clock: provides clock pulses so that SPI communication may work

properly, connects to pin 13 on Arduino by default.

MISO – Master in Slave Out: allows nRF module to send data from the

microcontroller, connects to pin 12 on Arduino by default.

MOSI – Master Out Slave In: allows nRF module to receive data from the

microcontroller, connects to pin 11 on Arduino by default.

CE – Chip Enable: enables SPI communication.

SCN – Ship Select Not: set to LOW to disable SPI communication, therefore, to

operate nRF, this pin should be kept HIGH.

IRQ – Interrupt: in used when interrupt is required.

nRF24L01 employs Master and Slave control model. Only one slave can

communicate at one time, thus, the nRF24L01 module has an interrupt pin (IRQ)

to notify the master when one specific slave needs to communicate. However, the

nRF library used in this project does not support this function, hence this pin is

not exploited.

TRANSCEIVER – COMMANDER RECEIVER – DC MOTOR

#include <SPI.h> #include <SPI.h>

#include <Nrf24l01.h> #include <Nrf24l01.h>

#include <RF24.h> #include <RF24.h>

Library SPI is used for communicating interface with the modem. Library

Nrf24l01 serves for this particular module. Library RF24 permits module

controlling.

 RECEIVER – DC MOTOR

55

TRANSCEIVER – COMMANDER

//Define pin CE, CSN //Define pin CE, CSN

RF24 radio(2,3); RF24 radio(4,5);

//Define address //Define address

const byte addresses[] [6] =

{“00001”, “00002”};

const byte addresses[] [6] =

{“00001”, “00002”};

There are two addresses for both transceiver and receiver because this system is

two-way communicating.

TRANSCEIVER – COMMANDER RECEIVER – DC MOTOR

radio.begin(); radio.begin();

radio.openWritingPipe(address

es[1]); //00002

radio.openWritingPipe(addres

ses[0]); //00001

radio.openReadingPipe(1,adres

ses[0]); //00001

radio.openReadingPipe(1,adre

sses[1]); //00002

radio.setPALevel(RF24_PA_MIN)

;

radio.setPALevel(RF24_PA_MIN

);

radio.setPALevel() is to define the power level, ranging between values of PA as

MIN, LOW, HIGH, MAX.

56

CHAPTER 5 – EXPERIMENT RESULTS AND

DISCUSSION

The experiment is brought out to confirm the model’s adaptability to several targets as

originally set. To satisfy the objective of this work, we have conducted altogether two

main experiments, including the basic functionality tests and the transmission range

test. In the basic functionality tests, the implemented prototype has been tested for the

basic functions, including the basic movement under the wired and wireless conditions,

the basic speed control, the control for the reverse and forward directions and the

functionality of the PID controller. Table 5.1 summarizes the results of the basic

functionality tests.

 OBJECTIVES ACHIEVED

DISCUSSION

AND

COMMENTS

1
Wirelessly control DC motor

speed and direction
Yes

Communication range varies

from 100 meters to 400

meters, depending on the

location of experiment.

2

Target speed and actual speed

are displayed on LCD screen

(pulses/second)

Yes

The actual speed display gets

updated simultaneously as the

encoder feedbacks, therefore

the characters gets blurred.

Power is supplied through a

battery (for portable purpose)

and not sufficient enough that

the screen contrast is not as

57

visible as when connecting

using computer supply power.

3
Motor direction is changed

when being controlled
Yes

4
Up Button requests increasing

speed by small step
Yes

Controller gets unstable when

small step is larger than 200

(delay, motor’s speed does

not meet set speed).

5
Down Button requests

decreasing speed by small step
Yes

Controller gets unstable when

small step is larger than 200

(delay, motor’s speed does

not meet set speed).

6
Up Button requests increasing

speed by large step
Yes

Controller gets unstable when

large step is larger than 500

(delay, motor’s speed does

not meet set speed).

7
Down Button requests

decreasing speed by large step
Yes

Controller gets unstable when

large step is larger than 500

(delay, motor’s speed does

not meet set speed).

8
Motor gets ON/OFF properly

when commanded
Yes

Table 5.1: Basic Functionality Tests

In addition to the basic functionality check, a highly comprehensive experiment is

conducted to explore the performance related to the transmission efficiency. One of the

tests was the range test. In this test,the maximum distance between the transmitting end

and the receiving end was measured while some of the parameters were changed. The

58

purpose of this test was to explore not only the communication range but also the

enhancement of the radio. The results of this test are summarized in Table 5.2.

 METHOD RESULT COMMENT

1

Soldering decoupling

capacitors of 1000µF to

Nrf24L01 modules.

Worked

These RF modules are very

sensitive to insufficient power,

the capacitor evens out power

spikes, thus provides a more

stable voltage while operating

. Also, the 3.3V pin on

Arduino (which is used to

power the RF module) is not

really 3.3V, it is tested to be

varied from 2.9V to 3.3V.

Therefore, the capacitor

functions as an external power

source when needed. (Figures

5.1)

2

Set power level by defining

radio.setPALevel() with

different values: LOW, HIGH,

MAX.

Partially

working

The communication range is

improved, however, motor’s

performance does not adapt

controlling commands

sufficiently. Because the

longer the range, the slower

the data transmission speed.

The model therefore accepts

PA level as MIN.

Table 5.2: Transmission Range Test

The following figures show setup done for testing first method.

59

Figure 5.1: Capacitor was added on (a): supply power source

Figure 5.1: Capacitor was added on (b): nRF24L01 modules

60

CHAPTER 6 - FEASIBILITY OF EXTENDING THE

TRANSMISSION RANGE

6.1. RELATED FORMULAS

The maximum range of remote control that was achieved for this aforementioned

experimental setup was 400 meters. Therefore, a process for further extending this range

was carried out. This range can be explained by the well known Friis’ formula.

According to Friis’s theorem, the range of communication can be derived as follows:

The directivity is:

D =
U
Ui

 (1)

Multiplying the top and bottom of (1) with the radius r, we obtain:

D =
r2U
r2Ui

 (2)

The power received by antenna 2 is given by:

PR = STAeR =
PTDT

4πR2 AeR (3)

Since the effective aperture for any antenna can also be expressed as:

A =
 λ2

4π
D

61

Equation (3) can be rewritten as:

PR =
PTDT

4πR2
λ2

4π
DR (4)

Further rearranging this equation yields:

PR =
PTDTDR

(4πR)2 λ2 (5)

If all the antennas are 100% efficient, then the power receivable at the receiving end is:

PR = PT
GTGR

(4πR)2 λ2 (6)

The final formula of (6) is known as Friis’ formula. This formula clearly suggests that

the increase in the transmitting power PT will lead to an increase in the power receivable

at the receiving end. The power at the receiving end as predicted by the Friis’ formula

is consistent with the experimental outcome as summarized in Table 5.2.

In addition to the power at the transmitting end, it is also possible to increase the antenna

gain at the receiving end and/or the antenna gain at the transmitting end to further

increase the power receivable at the receiving end. In so doing, we can increase the

overall transmission range of the implemented prototype.

At the moment, the antennas we had in this project are monopole antennas with very

limited gain. The reason is because the monopole antenna is omni-directional. The

electromagnetic waves being sent out by a monopole antenna is two dimensionally

spread to all directions, not just the direction of the receiving end. As such, much power

has been lost to other unwanted direction during the transmission process. To boost the

gain, we can change the antenna topology of the transmitting antenna. The simplest and

most direct topology is the Yagi-Uda antenna topology. Figure 6.1 shows the proposed

antenna topology.

62

It can be seen from Figure 6.1 that enhancement of the gain at the transmitting end can

be easily realized by adding a director and a reflector, both of them can be of the same

material as the monopole at the middle of Figure 6.1. The reflector reflects the back

lobe so that the power from the transmitting end can be radiated towards the right side

only, assuming the right side is where the receiving end is. The director serves to focus

the power and sharpen the beam towards the receiving end.

Figure 6.1. The proposed antenna topology for the transmitting end of our

experimental setup.

63

CHAPTER 7 – CONCLUSION

In this work, we have realized the hardware for remote control of a DC motor as well

as the software that controls the hardware using the built-in PWM library. The hardware

comprises microcontroller board - Arduino UNO R3, a DC motor (Hitachi), H-Bridge

driver, a monopole antenna for communicating at 2.4 GHz, and an nRF24L01 module.

The outcome of this experiment has proven beyond any doubt that, using the present

monopole antenna topology, the basic functionalities of the DC motor were able to be

remotely controlled at a maximum distance of 400 meters. In accordance with the

theoretical prediction made by Friis’ formula, we have also found that the transmission

range was changeable by changing the power at the transmitting end. The results of our

analysis suggest that a further increase in the transmission range is possible if the

antenna gain at the transmitting end and/or the receiving end is increased.

64

REFERENCE LIST

[1] Glover, J.D. and Sarma, M.S. and Overbye, T. (2011). Power System

Analysis and Design. [Online]. Available:

https://books.google.com.vn/books?id=uQcJAAAAQBAJ

[2] Neacșu, D.O. (2020). Automotive Power Systems. [Online]. Available:

https://books.google.com.vn/books?id=nw_2DwAAQBAJ

[3] Xia, C. (2012). Permanent Magnet Brushless DC Motor Drives and

Controls. [Online]. Available:

https://books.google.com.vn/books?id=FkRYP7DWO9cC

[4] Sarb, D; Bogdan, R. (2016). Wireless Motor Control in Automotive

Industry. [Online]. doi: 10.1109/TELFOR.2016.7818790

[5] Vinothkanna, R. “Design and analysis of motor control system for wireless

automation”, Journal of Electronics, vol.02, no.03, pp. 162-167. [Online].

doi: https://doi.org/10.36548/jei.2020.3.002

[6] Theraja, BL. (2005). A Textbook of Electrical Technology - Volume II.

[Online]. Available:

https://books.google.com.vn/books?id=_RyjAsxFbdEC

[7] El-Sharkawi, M. (2019). Fundamentals of Electric Drives. [Online].

Available: https://books.google.com.vn/books?id=Qd3JswEACAAJ

65

[8] Drury, B.; Drury, W.H. (2001). Control Techniques Drives and Controls

Handbook. [Online]. Available:

https://books.google.com.vn/books?id=vDQHzeEmSfUC

[9] Peddapelli, S.K. (2016). Pulse Width Modulation: Analysis and

Performance in Multilevel Inverters. [Online]. Available:

ttps://books.google.com.vn/books?id=4cvJDQAAQBAJ

[10] Hnatek, E.R. (1989). Design of Solid-State Power Supplies. [Online].

Available: https://books.google.com.vn/books?id=3jgfAQAAIAAJ

[11] Sclater, N. (2011). Mechanisms and Mechanical Devices Sourcebook. 5th

ed. [Online]. Available:

https://books.google.com.vn/books?id=waSobYG567MC

[12] Morris, A.S. and Langari, R. (2020). Measurement and Instrumentation:

Theory and Application. [Online]. Available:

https://books.google.com.vn/books?id=z7vbDwAAQBAJ

[13] Tong, W. (2022). Mechanical Design and Manufacturing of Electric

Motors. [Online]. Available: https://books.google.com.vn/books?id=-

7poEAAAQBAJ

[14] Datasheet for Atmega328P and Variants. Accessed: Mar. 09, 2023.

[Online]. Available: www.microchip.com/wwwproducts/en/ATmega328p

66

[15] Barrett, S.F. (2013). Arduino Microcontroller Processing for Everyone!.

3rd ed. [Online] Available:

https://books.google.com.vn/books?id=TbldAQAAQBAJ

[16] Kalya, S. and Kulkarni, M. and Shivaprakasha, K.S. (2021). Advances in

VLSI, Signal Processing, Power Electronics, IoT, Communication and

Embedded Systems: Select Proceedings of VSPICE 2020. [Online].

Available: https://books.google.com.vn/books?id=7JQoEAAAQBAJ

67

APPENDIX 1 – MAIN SOFTWARE FOR CLOSE-LOOP

CONTROL
1 #define ENCA 2

2 #define ENCB 3

3 #define PWM 11

4 #define IN2 12

5 #define IN1 13

6 //Pins from D4 to D10 are saved for LCD Keypad pins

7

8 #include <LCDKeypadShield.h>

9 LCDKeypadShield shield;

10

11 unsigned int timer_reload = 0xF0;

12 //Use Timer 2, prescaler 1024, 1 millisecond per cycle

13 int pos = 0;

14 int pos_reset = 0;

15 float speed_prev = 0;

16 float speed_curr = 0;

17 int speed_target = 0;

18 float eprev = 0;

19 float eintegral = 0;

20

21 //PID CONSTANT

22 float kp = 0.1;

23 float kd = 0.0005;

24 float ki = 0.08;

25

26 long prevT = 0;

27 const float cycle_time = 0.001;

28 const int speedmax = 5000;

68

29 const int speedstep_large = 500;

30 const int speedstep_small = 100;

31 boolean controller_stat = LOW;

32

33 //DISPLAY SETTING

34 const int stat_col = 13;

35 const int stat_row = 0;

36 const int act_col = 10;

37 const int act_row = 1;

38 const int set_col = 6;

39 const int set_row = 0;

40 const int disp_count_over = 19;

41 int disp_count = 10;

42 int speed_disp = 0;

43

44 void setup() {

45 pinMode(ENCA,INPUT);

46 pinMode(ENCB,INPUT);

47

attachInterrupt(digitalPintoInterrupt(ENCA),readEncoder

 ,RISING);

48

49 //Configuring Timer 2

50 cli(); //disable interrupts

51 OCR2A = timer_reload;

52 TCCR2A = 1<<WGM21;

53 TCCR2B = (1<<CS22)|(1<<CS21)|(1<<CS20);

54 TIMSK2 = (1<<OCIE2A);

55 sei(); //enable interrupts

56

69

57 //Setup LCD

58 shield.setCursor(0,0);

59 shield.print(F(“Set: ”));//blank spaces to

 override previous printed line

60 shield.setCursor(0,1);

61 shield.print(F(“Actual: ”));

62 }

63

64 void loop() {

65 switch(shield.getButtons()) {

66 case ButtonRight:

67 speed_target=speed_target+speedstep_large;

68 if (speed_target>speedmax) {

69 speed_target=speedmax;

70 }

71 disp_set_speed();

72 break;

73 case ButtonLeft:

74 speed_target=speed_target-speedstep_large;

75 if (speed_target<-speedmax) {

76 speed_target=-speedmax;

77 }

78 disp_set_speed();

79 break;

80 case ButtonUp:

81 speed_target=speed_target+speedstep_small;

82 if (speed_target>speedmax) {

83 speed_target=speedmax;

84 }

85 disp_set_speed();

70

86 break;

87 case ButtonDown:

88 speed_target=speed_target-speedstep_small;

89 if (speed_target<-speedmax) {

90 speed_target=-speedmax;

91 }

92 disp_set_speed();

93 break;

94 case ButtonSelect:

95 controller_stat=!controller_stat;

96 disp_stat();

97 break;

98 case ButtonNone:

99 disp_set_speed();

100 break;

101 default:

102 break;

103 }

104 if (disp_count>disp_count_over) {

105 disp_count=0;

106 disp_actual_speed();

107 }

108 }

109

110 ISR(TIMER2_COMPA_vect) {

111 OCR2A=timer_reload;

112 if(pos_reset==0) {

113 speed_curr=0;

114 speed_curr=((speed_prev*2)+speed_curr)/3;

115 speed_prev=speed_curr;

71

116 }

117 pos_reset=0;

118

119 //Error Calculation

120 float e = (float)speed_target-speed_curr;

121

122 //Derivative Formula

123 float dedt = (e-eprev)/cycle_time;

124

125 //Integral Formula

126 eintegral = eintegral+e*cycle_time;

127

128 //Control Signal

129 float u=kp*e+kd*dedt+ki*eintegral;

130 float power=0;

131 int dir=0;

132

133 //Control Motor Power and Direction

134 if(controller_stat==HIGH) {

135 power=fabs(u);

136 if(power>255) {

137 power=255;

138 }

139 dir=1;

140 if(u<0) {

141 dir=-1;

142 }

143 }

144 else {

145 e=0;

72

146 eintegral=0;

147 }

148

149 //Define the Motor

150 setMotor(dir,power,PWM,IN1,IN2);

151

152 //Store error value for updating

153 eprev=e;

154

155 //Update Display Speed

156 disp_count++;

157 speed_disp=(speed_disp*2 + (int)speed_curr)/3;

158 }

159

160 void disp_set_speed() {

161 shield.setCursor(set_col,set_row);

162 shield.print(F(“ ”));

163 shield.setCursor(set_col,set_row);

164 shield.print(speed_target);

165 }

166 void disp_actual_speed() {

167 shield.setCursor(act_col,act_row);

168 shield.print(F(“ ”));

169 shield.setCursor(act_col,act_row);

170 shield.print(speed_disp);

171 }

172

173 void disp_stat() {

174 shield.setCursor(stat_col,stat_row);

175 if(controller_stat==HIGH) {

73

176 shield.print(F(“On ”));

177 } else {

178 shield.print(F(“Off”));

179 }

180 }

181

182 void setMotor(int dir, int pwmVal, int pwm, int in1, int

 in2) {

183 analogWrite(pwm,pwmVal);

184 if(dir==-1) {

185 digitalWrite(in1,HIGH);

186 digitalWrite(in2,LOW);

187 }

188 else if(dir==1) {

189 digitalWrite(in1,LOW);

190 digitalWrite(in2,HIGH);

191 }

192 else {

193 digitalWrite(in1,LOW);

194 digitalWrite(in2,LOW);

195 }

196

197 void readEncoder() {

198 int b = digitalRead(ENCB);

199 if(b>0) {

200 pos++;

201 pos_reset++;

202 }

203 else {

204 pos--;

74

205 pos_reset--;

206 }

207

208 //Calculate time interval between two pulses

209 long currT=micros();

210 float deltaT=((float)(currT-prevT))/(1.0e6);

211 prevT=currT;

212 speed_curr=pos/deltaT;

213

214 //Filter to avoid jittering

215 speed_curr=((speed_prev*2)+speed_curr)/3;

216 speed_prev=speed_curr;

217 pos=0;

218 }

219 /**********END OF PROGRAM**********/

75

APPENDIX 2 – TRANSMITTER’S CODE – LCD & KEYPAD

76

77

78

79

APPENDIX 3 – RECEIVER’S CODE – DC MOTOR

80

81

82

83

84

APPENDIX 4 – CODE SECTION FOR OPEN-LOOP DC

MOTOR CONTROL

	1. COVER
	WIRELESS DC MOTOR CONTROL USING MICROCONTROLLER AND RF COMMUNICATION
	Bachelor Thesis
	PLACE 2023
	Submitted by: VUONG HOANG THIEN TAM
	RUB Student ID: 108018207532
	VGU Student ID: 9938
	Supervisor: Dr. Liu Wai Yip
	Co-supervisor: Prof. Dr. xxxxx

	2. NOT COVER - NO PAGE NUMBERING
	3. CONTENT
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	1.1. BACKGROUND
	1.2. THESIS STRUCTURE
	1.3. REPORT CONTENT
	1.
	2.
	2.1. DC MOTOR
	2.1.1. DC MOTOR’S WORKING PRINCIPLE
	2.1.2. TYPES OF DC MOTOR AND THEIR EQUIVALENT CIRCUITS
	2.1.3. BRUSHLESS DC MOTOR (BLDC)

	2.2. PULSE WIDTH MODULATION (PWM)
	3.1. PROPOSED SYSTEM
	3.2. HARDWARE IMPLEMENTATION
	3.2.1. DC MOTOR
	3.2.2. OPTICAL ROTARY ENCODER
	3.2.3. MICROCONTROLLER – ARDUINO UNO R3
	3.2.4. LM2596 VOLTAGE REGULATOR
	3.2.5. H-BRIDGE MOTOR DRIVE – BTS 7960
	3.2.6. LCD 1602 KEYPAD SHIELD

	3.3. HARDWARE DIAGRAM
	3.4. WIRING DIAGRAM
	3.5. SYSTEM LAYOUT DESIGN
	3.6. PROGRAMMING
	3.6.1. CODE STRUCTURE
	3.6.2. PULSE WIDTH MODULATION IN ARDUINO
	3.6.3. TIMER/COUNTER
	3.6.4. EXTERNAL INTERRUP / PIN CHANGE INTERRUPT
	3.6.5. PID TUNING
	3.6.6. PROGRAM FLOWCHART

	4.1. INTRODUCTION nRF24L01
	4.2. SYSTEM LAYOUT
	4.3. EXPERIMENTAL SETUP
	4.4. PROGRAMMING
	6.1. RELATED FORMULAS
	REFERENCE LIST
	APPENDIX 1 – MAIN SOFTWARE FOR CLOSE-LOOP CONTROL
	APPENDIX 2 – TRANSMITTER’S CODE – LCD & KEYPAD
	APPENDIX 3 – RECEIVER’S CODE – DC MOTOR
	APPENDIX 4 – CODE SECTION FOR OPEN-LOOP DC MOTOR CONTROL

