

COPYRIGHT WARNING

This paper is protected by copyright. You are advised to print or download ONE

COPY of this paper for your own private reference, study and research purposes. You

are prohibited having acts infringing upon copyright as stipulated in Laws and

Regulations of Intellectual Property, including, but not limited to, appropriating,

impersonating, publishing, distributing, modifying, altering, mutilating, distorting,

reproducing, duplicating, displaying, communicating, disseminating, making

derivative work, commercializing and converting to other forms the paper and/or any

part of the paper. The acts could be done in actual life and/or via communication

networks and by digital means without permission of copyright holders.

The users shall acknowledge and strictly respect to the copyright. The recitation must

be reasonable and properly. If the users do not agree to all of these terms, do not use

this paper. The users shall be responsible for legal issues if they make any copyright

infringements. Failure to comply with this warning may expose you to:

 Disciplinary action by the Vietnamese-German University.

 Legal action for copyright infringement.

 Heavy legal penalties and consequences shall be applied by the competent

authorities.

The Vietnamese-German University and the authors reserve all their intellectual

property rights.

Vietnamese-German University
Department of Computer Science

Frankfurt University of Applied Science
Faculty 2: Computer Science and Engineering

Fine-grained access control in NoSQL

Le Minh Thu

Student ID: 13299
Supervisor: Prof. Manuel Clavel

Co-supervisor: Dr. Huong Tran Thi Thu

Bachelor thesis

Submitted in partial fulfillment of the requirements for the degree of
bachelor of engineering in study program computer science,

Vietnamese-German University, 2022

January 06, 2022

Binh Duong, Vietnam

Disclaimer

I hereby declare that the information reported in the paper is the result
of my own, original, individual work, except where references are made. I
also certify that this undergraduate dissertation has not been previously or
concurrently submitted for other degrees or other universities, institutions.

Le Minh Thu

1

Abstract

Fine-grained access control has always been a security problem
when working with databases. Traditionally, in SQL databases, this
is done using techniques such as role-based access control using privi-
leges and re-writing queries using views. We introduce one definition
of fine-grained access control and show that the current native security
support in databases cannot effectively enforce this definition. We show
that there is a need for a new combination of policy specification and
enforcement. NoSQL-exclusive security problems are also discussed.

1 Introduction

Fine-grained access control (FGAC) is a crucial part of databases and infor-
mation handling. It defines which information the users are able to access
and therefore protects the information from unauthorized operations. There
are multiple scenarios where FGAC is needed:

• In a university, a student can only view his/her information and grades.
A lecturer can view all grades of students whom he/she teaches.

• In a shared cloud storage, a user can view his/her files. He/She can
view other people’s files only if they access them through links.

• In a company, the intranet only allows access from 9 AM to 5 PM.

We take the definition of FGAC from [1], which states ”fine-grained access
control policies depend not only on static information, namely the assign-
ments of users and permissions to roles, but also on dynamic information:
namely, the satisfaction of authorization constraint on the current state of
the system.” In our own words, FGAC policies support the granularity up to
field-level and respond differently to queries based on the current database
state.

NoSQL is a database type that had experienced a significant rise in popular-
ity in recent years. When the term NoSQL is coined in 1998, Carlo Strozz
originally meant databases that do not bear the properties of a traditional
SQL database, such as stores data in relations, querying using SQL, etc [2].
Although there is not really a specification of NoSQL, it is commonly ac-
cepted that they are schemaless with simple queries and higher performance
and scalability. NoSQL has several architectural patterns such as key-value
database, document database, graph database, column-oriented database,
etc, but we are only concerned document database in this document.

2

Table 1: NoSQL and SQL comparision

NoSQL SQL

stores records as key-value pairs stores records as tables rows

schemaless, data integrity is not al-
ways achieved

support a schema and strict data in-
tegrity

simpler queries: does not sup-
port the SQL-equivalent of JOIN,
TRANSACTION, LIMIT and non-index
WHERE

complex queries

required known access pattern

higher scalability and performance lower scalability and performance

Some well-known NoSQL databases are MongoDB, Amazons DynamoDB,
Googles Firestore, ElasticSearch, just to name a few. In this document, we
discuss Google Firestore and MongoDB as they are NoSQL databases with
different approaches to security.

The outline of this document is as follows:

Section 2. Apart from a query language, a database needs a policy language to
enforce FGAC. We also introduce the attribute-based access control
model. Although it is not enough to enforce FGAC, it is a step forward
of development from the popular role-based access control model.

Section 3. We discuss the two models that handle unauthorized access: the Tru-
man model and the Non-Truman model. For each model, the gen-
eral idea, mechanism, and drawbacks are discussed. The Non-Truman
model, although seems to be very tempting on paper, is still under
discussion due to the unknown decidability of the validity test.

Section 5 The two NoSQL databases Google Firestore and MongoDB are dis-
cussed and compared based on categories such as granularity, pol-
icy language expressiveness, enforcement and performance. Although
both databases use attribute-based access control, their approaches to
FGAC are fairly different.

Section 4. For queries that return multiple documents, it is shown that imple-
menting enforcement on the Truman model is easier than the Non-
Truman model. Due to the fact that views are a sub-collection of an
actual collection, the Truman model can be thought of as multiple
filters and these filters can be merged or performed operations on. It
is not the same for Non-Truman databases.

3

Section 6. We present an existing solution for SQL and identify the changes that
need to be made to make it work for NoSQL. We show how the Non-
Truman model can be implemented on MongoDB. In particular, due
to the schemaless nature of NoSQL manual enforcement, authorization
checks are done in a document-by-document and field-by-field fashion.

Section 7. NoSQL has proven to be more effective in certain scenarios compared
to SQL. However, their properties, which put performance and scala-
bility as the highest priorities cause them to suffer from certain secu-
rity problems that SQL did not have. This sections discuss NoSQL-
exclusive problems and mention other interesting problems that are
not in the scope of this document.

2 Policy language

2.1 Overview

Policy languages (often called security languages) are languages that can
express the security policies of the applications [3]. Some examples of pol-
icy language include access control list (ACL), X.509, Simple Distributed
Security Infrastructure (SDSI) [4], etc. Each security language has different
strengths and is particularly designed for specific scenarios. For example,
X.509 is used for X.500 database access control, ACL is mainly used in file
systems, and so on.

One example of ACL in Linux systems is shown below. The policy in addi-
tion to the normal user-group-other permissions, allow user steve to read
and execute.

file: test/declarations.h

owner: mandeep

group: mandeep

user::rw-

user:steve:r-x

group::rw-

other::r--

Every language supports a model which defines how protected objects, users,
and policies interact with each other. In most cases, the model that the
language supports contains protected resources, identities, and some other
objects that can evaluate the permissions of the caller. The definitions of
these objects depend on the access control model and the language being
used. They can be roles, relationships, a certain set of properties, etc. Policy

4

languages provide a convenient, high-level method to achieve security, but
they also raise a number of problems such as enforcement and expressiveness,
as we will see in section 7.1.

Some examples of access control models are: Discretionary Access Control
(DAC), Mandatory Access Control (MAC), X-based Access Control (such
as role-based, attribute-based, history-based, identity-based, lattice-based,
etc).

2.2 Usage

Policy languages are used to limit what a user can do with the database
information. However, in practice, they are rarely used directly. In a typical
3-tier application, the middle-tier is usually responsible for authentication
and authorization. Part of the reason is that databases do not have a suffi-
ciently expressive policy language that enables the database to protect itself
without relying on another component.

Database policy language is becoming more and more important these days
as cloud technology to some extend revives the 2-tier architecture: the client
and the cloud. In this architecture, the client cannot be trusted as it can
be modified, and it runs on hardware that the application owner/developer
has no control of.

2.3 Attribute-base access control

Since 2018, there is a trend in databases to start implementing attribute-
based access control (ABAC) due to the increasing need for fine-grained
access control. Databases like Google Firestore, MongoDB, Amazon Dy-
namo, etc are starting to support ABAC and design a policy language for
it in their latest version [5–7]. They do not completely switch to ABAC.
Some databases build an ABAC system on top of their old RBAC system
result in a hybrid system. For instance, MongoDB still uses RBAC but the
process of granting roles is attribute-based.

2.3.1 Definition

ABAC is a model that grants or denies a request based on specific attributes
of entities and on environmental conditions that could be globally recog-
nized. Policies implemented by this model are limited by the language and

5

the richness of supported attributes/conditions [8]. An attribute can be user
credentials, data value, metadata, etc. Ideally, these attributes do not need
to be input by the system admin. In this document, ’ABAC languages’ is
used to refer to languages that support the ABAC model.

Some example policies:

• Allow access from 9 AM to 5 PM

• Allow access if the user is older than 18 or is a staff

• Allow access if the document state is public

2.3.2 Comparison to Role-based access control (RBAC)

A brief comparison to role-based access control (RBAC) is made because
RBAC is currently a very common access control model for databases.
RBAC is the intuitive solution to the access control problem. In a way,
ABAC can be thought of as a natural development of RBAC and RBAC
can also be considered as an ABAC model where the system evaluates user
permission based on a limited set of, namely, pre-defined attributes roles
and groups.

In both models, the handling of the new user is very flexible. When a new
user/resource is created, there is no need to adjust the policies. The system
only needs to inject the attributes (roles in the case of RBAC) into that new
user/resource.

Role-based access control

• Easier to implement, defining roles is simple and fast, easy to manage

• Role explosion in the case everyone’s permissions is different from each
other.

Attribute-base access control

• Harder to implement, needs pre-define attributes and specified policies

• More fine-grained, more flexible

ABAC languages have a very big potential in this trend of development since
they are fine-grained, flexible, and easy to manage. It is also very convenient
to write field-level policies with ABAC.

6

2.3.3 Sample policy

Following are some samples of ABAC policy languages in MongoDB and
Google Firestore. Different databases vary in granularity. For the sake of
examples, document-level policies will be used so all databases can support
it.

Policy 1: allow to view post if post’s state is public or user is author of the
post

Firestore policy language

service cloud.firestore {

match /databases/{database}/PATH_TO_POSTS/{postId} {

allow read: if resource.data.state == ’public’ || resource.data.

author == request.auth.uid

}

}

MongoDB policy language.

{

"%or": [

{ "state": "public" },

{ "author": "%%user.id" }

]

}

Policy 2: allow a lecturer to view a record of a student if that lecturer teaches
that student (assuming that each student object has an array keeping the
ID of their lecturers)

Firestore policy language

service cloud.firestore {

match /databases/{database}/PATH_TO_STUDENTS/{studentId} {

allow read: if role == ’lecturer’ && request.auth.uid in

resource.data.lecturers

}

}

MongoDB policy language

{

"%%user.id" : {

"%in" : "lecturers"

}

}

7

It can be seen that the developer is limited by what the languages sup-
ports, such as operators (%or, ||, %in, etc) and objects (request.auth.uid,
%%user.id, etc). Firestore policy language is similar to Javascript while
MongoDB policy language follows JSON format. The current scenario of
ABAC is each database comes up with their own format. The policies are
not really reusable and must be re-written if a developer moves from a
database to another.

Among the policy languages, eXtensible Access Control Markup Language
(XACML) was proposed as the standard for ABAC policy languages and
some applications did implement it. However, the language is XML-based
and is low-level, which makes it hard for a human to write/manage the pol-
icy. Aso, it does not support collection queries (queries which are expected
to return multiple records). In general, XACML does not seem to be a fit
for today’s application.

For now, there is still no standardized policy language for ABAC but the
general approach is clear, namely databases need to define attributes/opera-
tions and design a language where the policies can be expressed using those
attributes and operations.

3 Enforcement

Currently, there are two models, namely the Truman model and the Non-
Truman model, representing different ways for databases to respond to unau-
thorized access.

3.1 Truman model

For every query, the Truman model transparently filters out the unautho-
rized data from the result of the query and returns the result to the user [9].
The name came from the movie ”The Truman Show” where Truman is a
person who lives in a fake reality created by the film crew. Similarly, the
user does not know his/her query has been modified and believes that what
the database returns is the truthful result of the query, which it is not.

Example 1. Given a NoSQL database instance with the collection ”Movies”
contains 3 records:

{name: ”Frozen”, rating: ”General”, review: 1.6},
{name: ”Ice Age”, rating: ”General”, review: 2.6},

8

{name: ”13 reasons why”, rating: ”Restricted”, review: 3.6}

and the policy: Under-13-year-old online users can only view movies with
”General” rating.

Suppose that user Abe is 12 years old. Abe makes a query <get all the
movies in the database>. Truman databases would return

{name: ”Frozen”, rating: ”General”, review: 1.6},
{name: ”Ice Age”, rating: ”General”, review: 2.6}

Example 2. This example shows field-level policy. We add the policy to the
above example: Movies review is public if the value is greater than 2.5

In this case, with the same query <get all the movies in the database>,
Truman model would returns

{name: ”Frozen”, rating: ”General”},
{name: ”Ice Age”, rating: ”General”, review: 2.6}

3.1.1 Mechanism of Truman model

The Truman model enforces security using a view called authorization view.
An authorization view is a view created using user credentials as parameters,
specifies the data that the user is authorized to read [9].

Although the authorization view can be created using a query (see [9] and
section 7.1), it should be thought of as an abstract idea of a set/multiset
of records that the user is allowed to view rather than an actual concrete
database view. In practice, it is expensive to create a view for every incoming
query so that databases can have a different implementation to achieve this
same idea.

Instead of querying against the database, the Truman model querying against
the authorization view.

In the case of Example 2, Abe’s authorization view for the ”Movies” collec-
tion contains

{name: ”Frozen”, rating: ”General”},
{name: ”Ice Age”, rating: ”General”, review: 2.6}

and his query <get all the movies in the datase> will be modified to <get all
the movies in the authorization view> and therefore will return the result

9

in Example 2.

Example 3. If Abe is querying <get all movies with ”review” equals to 1.6
from database>, Truman databases would return an empty set of results
because the query has been transparently modified to <get all movies with
”review” equals to 1.6 from Abe’s authorization view>. Although there
is actually a record that has review value equals 1.6 in the database, Abe
cannot query/see it because he is not authorized.

3.1.2 Problem of Truman model

We have seen how the Truman model protects its data using the authoriza-
tion view. Since the authorization view only contains what the user can see,
querying from an authorization view can guarantee the user only see their
authorized data.

However, the Truman model re-writes the query without the users knowing
it and that makes the users believe what they see is the truthful result of
the query.

Example 4. In this particular example, if Abe wants to count the total
number of movies, he can query <count all movies in the database> and
get 2. There are 3 movies, but only 2 of them are available to Abe, so he
gets the result of 2. Abe does not know his query has been modified, so he
believes the database has 2 movies, which is the ’fake reality’ that has been
mentioned before. If Abe compares his result with another adult user who
made the same query, he will notice the inconsistent results.

This shows that the result returned by the Truman model can be misleading.

3.2 Non-Truman model

The Non-Truman model solves the problem of misleading results by either
executing the query with no modification or rejecting/throwing errors if the
database detects any unauthorized access.

In the case of example 1, databases implementing the Non-Truman model
would throw an error saying the user is not authorized to make such a
query. The reason is Abe is trying to access an unauthorized document
{name: ”13 reasons why”, rating: ”Restricted”, review: 3.6}. It can be
seen that different from the Truman model, the Non-Truman model does
not automatically filter out unauthorized data.

10

In the case of example 3 and 4, the Non-Truman model would reject the
query because the user is not authorized to see/count all movies.

Example 5. If the query is authorized, both models behave the same. If Abe
queries <get names of movies with ”general” rating>, both models would
return {name: ”Frozen”}, {name: ”Ice Age”}

3.2.1 Mechanism of Non-Truman model

The Non-Truman model enforces access control using a validity test, a test
to check if the query is valid. A valid query is defined as a query that can be
answered only using authorized data. Failing the test, the query is rejected.
Passing the test, the query is executed with no modification.

The Non-Truman model also uses an authorization view, but it is for the
validity test rather than re-writing queries. For each query q, if the Non-
Truman model can construct an equivalent query q’ when querying against
the authorization view, then the query q is valid. (It is phrased differently
across multiple papers: the query is valid if it can be answered using only the
authorization view/if it can be rewritten against the authorization view/if an
equivalent query q’ against the authorization view can be constructed.) The
definition of ”equivalent” is taken from [9], which means q and q’ produce
the same results for all database instances.

Example 6. If Abe makes the query q <get movies with ”general” rating and
review greater than 2.5 from database>. The equivalent query q’ can be
constructed as <get movies from authorization view>. Therefore, q passes
the validity test and is executed with no modification.

[9] also mentioned the terminology unconditionally valid and condition-
ally valid. In short, unconditionally valid means the query is valid for all
database instances, and conditionally valid queries are only valid for a num-
ber of database instances.

For example, Abe’s query q1 <get name of movies with ”general” rating>
will always be valid no matter the content of the current database state,
because Abe is allowed to view such data. Therefore, the query q1 is un-
conditionally valid.

However, suppose the current database ”Movies” collection contains 2 records:

{name: ”Frozen”, rating: ”General”, review: 2.6},
{name: ”Ice Age”, rating: ”General”, review: 2.6},

11

The queryq2 <get all movies in the database> is valid for this state, but it
will be unauthorized in example 1 of section 3.1. Therefore, the query q2

is conditionally valid, which means it only valid for some of the database
instances.

3.2.2 Problem of Non-Truman model

Restricted queries The Non-Truman model solves the problem of mis-
leading results in the Truman model. The result, in the case the query is
accepted, is the same for everyone because the query is executed as it is.
However, this leads to another problem, namely the queries in the Non-
Truman model are more restrictive.

The Non-Truman model does not filter out unauthorized data. For the query
to be accepted, the user must add a filter, which somehow, expresses his/her
permission.

Example. Suppose there is a collection Post with the policy that allows
access if the user is the author of the post. Since the query result is the same
for every caller (in valid cases), the user must inform the database he/she is
the author of the posts by adding the condition author = $userId, where
$userId is replaced by the real userID value of the user. This requires the
users to be aware of the policies every time they query.

The validity test Determining the validity of a query is not simple. If
an equivalent is not found, it is unknown whether there is no such query.
The decidability of the problem, and defining an algorithm to construct the
equivalent query, is still under discussion [9–12].

As has been said before, unconditionally valid means the query is valid for
all database instances, and conditionally valid queries are only valid for a
number of database instances. For unconditional validity, the problem can
be reduced to the old problem of rewriting queries using views and has
already been proven to be decidable for conjunctive queries [9, 10, 13]. For
the general case, it is undecidable [13].

For conditional validity, it is still unknown. Also, there is no algorithm yet
that is complete for bag semantics.

The Non-Truman has been discussed a lot throughout the years, but still
very few databases decided to implement it. Although it can handle most
general queries, the inference rules and validity test has yet to cover all pos-

12

sible cases which lead to unpredicted behavior in different implementations.
This raises the question of its practicality in real-life applications.

3.2.3 Comparison

In computer science, convenience and security have always been a trade-off.

The Truman model has higher data availability, higher independence be-
tween the query and the policy but the result is misleading. In the example,
the issue is not very serious, but in automated processes where information
is handled in a pipeline fashion (the output of one calculation is the input
of another calculation), the errors could be accumulated over time and the
consequences could be severe.

On the other hand, the Non-Truman model result is consistent but it is
secure in the sense that it will lock out most queries and the queries are
highly dependent on the policy. One small change in the policies might lead
to a lot of queries getting rejected. On the bright side, the result can be
trusted as truthful.

4 Challenges of FGAC Non-Truman database

For the Truman model, some databases do not actually generate a view for
authorization. It is because views are very costly for performance and most
of the time databases would find another solution. For ABAC models, when
a specific document is requested, it is easy to evaluate the policy and check
for the attributes. But in the case where multiple documents are requested,
it is not efficient to evaluate the permission for every single document. One
solution that Axiomatics Reverse Query (ARQ) came up with is they will
work out a ”filter” from the policy and use that filter to directly query
against the database [14].

Here is how it works. For every document in collection C, the policy says
allow access if condition X is satisfied. (X might be a conjunctive or disjunc-
tive combination of multiple sub-conditions). From that policy, ARQ can
resolve that user A has the permission to view documents having property
X’. After that, they combine the original query with this newly made filter,
e.g. get documents having X’ property from C and passed it directly to the
database. For Truman databases, this is a great convenience. They achieve
the same behavior (filtering out unauthorized data) without using views.

13

It is not the same for Non-Truman. The first problem is that if the database
returns the result using a filter, it will never throw errors. In particular,
if nothing matches the filter, an empty set is returned. A Non-Truman
database needs to be able to detect unauthorized access and throw an error.

Another thing is that ABAC policies cannot take into account the database
state. As stated above, ABAC evaluates permissions from attributes of
user/request/resource (whose value is known when the query is made) or
from global variables (such as current time, environment, partition, etc). If
the information that needs to be checked is not inside the targeting docu-
ments, ABAC does not have an attribute to refer to it. This leads to the
problem of not being able to verify the validity of conditionally valid queries
when their validity depends on the current content of the database. For
example, a policy such as a user can read the average star rating of all re-
views if there are at least 100 reviews cannot be done using ABAC policy
language.

The problem could be solved using NoSQL denormalization. Normally,
NoSQL is encouraged to use duplicate data as their queries are not as com-
plex as SQL queries (no cross-collection queries). It also sometimes makes
sense to store duplicate data when the information is expensive to calculate.
However, for this problem being mentioned here, the database structure is
changed in order to make the policy works and that should not be the case.
Non-Truman already has queries that are very attached to their policies. If
the database structure is also dependent on the policy, changing the policy,
which happens quite often, would result in adjusting too many things.

Although ABAC languages cannot achieve FGAC, its syntax combination
(operator - attribute/variable - value) is very flexible and promising.

5 Comparison study: Google Firestore and Mon-
goDB

5.1 Granularity

Firestore offers document-level policies while MongoDB offers up to field-
level policies.

14

5.2 Expressiveness

5.2.1 Policy language

Firestore implements an ABAC system. MongoDB uses an RBAC system,
but the process of granting roles is attribute-based. For a attribute-based
system, a list of pre-defined attributes and operators are needed. Both
databases have a language (or text format) to express those attributes and
operators. For sample policies, see section 2.3.3

Because the attributes are pre-defined, these databases cannot take into
account the database state. Both have workarounds, but in general, secu-
rity rules alone cannot support permissions that take into consideration the
database state.

Table 2: List of attributes and global variables

Google Firestore MongoBD

request (path, method, data, auth) %%request

request.auth (id, email, etc) %%user (id, types, data, custom data,
etc)

resource (id, data, path) fields: call by names
document: using ’all fields’ flag

%%values

%%environment

%%partition

Table 3: List of operators

Google Firestore MongoBD

function() %function

&& %and

—— %or

exist() %exist

in %in

== / != / > / >= / < / <= %eq / %neq / %gt / %gte / %lt / %lte

5.2.2 Query language

In general, MongoDB query language support is greater Firestore’s.

15

Table 4: Query tools supported
Google Firestore MongoBD

Querying with indexed filter " "

AND in ’WHERE-clause’ " "

OR in ’WHERE-clause’ "

Nested subqueries "

Aggregate operator count "

SQL-Join

5.2.3 Enforcement

Firestore’s enforcement falls into the category of Non-Truman as stated in
their documentations: ’Rules are not filters’ [5]. Users cannot write a query
for all the documents in a collection and expect Firestore to return only the
documents that the current client has permission to access.

MongoDB, on the other hand, implements the Truman model. Although it
is not mentioned in their documentation, this can be determined based on
the way MongoDB reacts to unauthorized access.

5.2.4 Performance

Consider a collection with documents containing 2 fields, namely name and
age. All documents have their age-value greater than 18. The query con-
sisting counting the number of records whose age value is greater than 25.
The policies are: names are public and ages are public if their values are
greater than 18. The scenario is set so: (1) all access are authorized and
both databases can return the result and a comparison can be made, (2)
while we know all queries are valid, both databases still have to evaluate the
permission since there are policies.

Table 5: Database response time test

Firestore MongoDB

1000 documents about 500ms about 800ms

10000 documents about 500ms about 2500ms

Although the number of documents is relatively small for a database, it
shows that Firestore outperforms MongoDB in response time. This is not

16

totally surprising: Firestore sacrifices some functionalities (in particular,
the query language support is simpler) that hindrance its speed in order to
achieve high performance.

5.2.5 Firestore Non-Truman

Firestore does not completely implement the Non-Truman model. To avoid
the unusual issue regarding conditional validity, the Firestore team has
decided that the database only accepts unconditionally valid queries [15].
Firestore also bears the disadvantage of the Non-Truman model’s restricted
queries.

6 Workaround

Since there are still no algorithms that can correctly and completely handle
the validity test, a possible solution is to perform the authorization check
manually. For each incoming query, the result is not returned immediately
but goes through an ’authorization test’. This test takes each record as an
input and evaluated its content against the policies. If the content of any
record does not match, the test returns an error. If no test triggers an error,
the result is returned.

The general workflow of [1] is as follows:

1. The schema, policies, and SQL endpoints are defined in models.

2. A code generating tool takes the models as input and generates au-
thorization functions and stored procedures.

3. The stored procedure corresponding to the required query (defined in
models) is called using endpoints.

Although in the paper, FGAC is implemented in an SQL database, the same
can also be done on a NoSQL database. It is more simple to handle NoSQL
queries due to their lack of cross-collection (SQL-Join) queries. Stored func-
tions, although is not as powerful as store procedures, but are enough to
implement FGAC.

Another significant difference is the fact that NoSQL schema may not have
a schema. In SQL, the method can go to the schema and get the list of at-
tributes to be checked. For NoSQL, the method would need to generate a list

17

of protected fields for a collection. For each field in that list, check whether
the targeting document has that field. If yes, the system will evaluate the
permission using the corresponding policy.

6.1 Workflow

6.1.1 Define a security model

In the first step, a security model is defined. This security model defines
which and how a resource is protected by the action upon that resource and
the condition to be authorized. Figure 1 shows a security model for the
following policies:

• A lecturer can read their own name and age.

• A lecture can read any student’s name

• A lecture can read the age of a student if he/she teaches that student

Figure 1: Sample security model

[

{

"roles": [

"lecturer"

],

"actions": [

"read"

],

"resources": [

{

"collection": "lecturers",

"field": "name"

},

{

"collection": "lecturers",

"field": "age"

}

],

"auth": "doc._id == callerId"

},

{

"roles": [

"lecturer"

],

18

"actions": [

"read"

],

"resources": [

{

"collection": "students",

"field": "name"

}

],

"auth": "true"

},

{

"roles": [

"lecturer"

],

"actions": [

"read"

],

"resources": [

{

"collection": "students",

"field": "age"

}

],

"auth": "callerId in doc.lecturers"

}

]

A mapping between the queries and the endpoints is also defined.

Figure 2: Query and endpoint mapping

[

{

"name": "getAllLecturers",

"query": "lecturers.find()"

},

{

"name": "getAllLecturesAge",

"query": "lecturers.find({}, {age:1})"

},

{

"name": "getAllLecturersAgeLessThan30",

"query": "lecturers.find({age:{$lt:30}})"

}

]

19

6.1.2 Generate artifacts

In the next step, the program will parse through the security rules to con-
struct a list L1 of protected fields for each collection. Similarly, the program
will parse the query and construct a list L2 that contains the projecting
fields and the fields in the filter of the query. These are the fields that gives
the user the information and therefore need to be checked.

For each fields in L2, an authorization function is generated. It is a boolean
function taking in the user credentials and the requested document. This
function returns true if the user is authorized to perform the action on the
corresponding field.

For example, suppose the query is <get names of lecturers whose age is 25>.
Then two authorization functions will be generated. The user needs to be
authorized to access both ’name’ field and ’age’ field for the query to be
accepted. Although ’name’ is the only field that got returned, the user also
needs to be authorized to access ’age’. Because for every document that is
returned, the user can work out from the query that the value of ’age’ is 25,
therefore it also needs to be protected.

In the case the query asks for all fields, L1 and fields in the filter are used
instead. Since NoSQL databases do not have a schema, for each document,
we check if it contains a protected field, which means an authorization func-
tion is responsible for it. If yes, we call the authorization and check if the
user is authorized.

Figure 3 shows how stored functions can safely execute a query in a Non-
Truman way, in pseudo-code for readability. For the actual functions gen-
erated in javascript, see A.

Figure 3: Pseudo code of generated stored function

function auth_check_att1 (callerId, role, doc) {

//return true if user is authorized

switch (role) {

case ’role1’: return auth_condition_11; break;

case ’role2’: return auth_condition_12; break;

...

default: return false;

}

}

function auth_check_att2 (callerId, role, doc) {

//return true if user is authorized

switch (role) {

case ’role1’: return auth_condition_21; break;

20

case ’role2’: return auth_condition_22; break;

...

default: return false;

}

}

function endpoint_name (callerId, role) {

result = collection.find(filter).toArray()

result.forEach(function(doc) {

if (att1 in doc && !auth_check_att1(callerId, role, doc))

throw new Error(’Not authorized!’)

if (att2 in doc && !auth_check_att2(callerId, role, doc))

throw new Error(’Not authorized!’)

...

})

return result;

}

6.1.3 Execute safty the query

Finally, the stored functions are deployed on to the MongoDB clusters. The
functions can be called directly by the client, or the client can use the map-
ping from step 1 to call the appropriate stored functions.

7 Related problems

7.1 Policy language and querying language mapping

The enforcement of the policy depends crucially on the query language, as
it is the language that constructs the view.

Example. For the authorization view to get the authorized data of Abe, the
querying language needs to support two policies: (1) values of ”rating” is
”General”, (2) only show ”review” if the value is greater than 2.5.

For SQL, the view can be built with

CREATE VIEW AuthorizationView AS

SELECT name, rating, CASE review>2.5 WHEN TRUE THEN review ELSE

mask_value() END AS rating

FROM Movies

WHERE rating="General"

21

Because SQL is restricted with a schema, all records in the result set must
have the same number of attributes. To suppress an attribute, a mask value
must be used. Mask value is a placeholder that informs the existence of an
attribute but hides its value.

For NoSQL, since there is no schema, to suppress a field, it only needs to
be removed entirely. Following is a MongoDB example in javascript.

var pipeline = [

{$project: {

name: 1,

rating: 1,

review: {

$cond: {

if : { $gt : ["$review", 2.5] },

then: "$review",

else: "$$REMOVE"

}

}}

]

collection.aggregate(pipeline)

In this particular case, to enforce field-level policy, the query language must
support an if-then-else-like syntax in the projection clause of the query. The
problem, however, is not limited to enforcing field-level policy. Generally, if
the query language is not as powerful or as expressive as the policy language,
the policy cannot be enforced entirely. However, this problem is for future
discussions and in this document, it is assumed that the policy is translated
into the query language entirely.

7.2 NoSQL security and SQL security

NoSQL scalability and performance makes it more suitable for application
in certain scenarios. However, they suffer from lack of support for security
compared to the traditional approach of SQL.

• Granularity and schemalessness: As has been said in 6, policy
specification and enforcement in NoSQL does not have a prior as-
sumption based on the schema like in SQL. Documents in NoSQL are
not bounded with a pre-defined structure, therefore the fields and field
types are unknown. At the point of enforcement, it has to be manually
checked whether a record falls under the responsibility of a policy.

• Language: For now, NoSQL still have yet to have a standardized
universal querying language. This makes development and studying

22

NoSQL more difficult. It is also inconvenient in switching between
databases as the user has to learn new semantics, syntax, etc.

• Performance and security: SQL has very strict constraints but it
is not the same for NoSQL. With proper policy enforcement, a lot
of work needs to be done. Some databases will make a reasonable
security sacrifice as performance is the reason NoSQL is popular in
the first place.

[16] discusses some other problems but above are the main ones we are
concerned with. NoSQL is convenient in the case of scalability and when
read happens more often than write. It is also faster to setup a prototype
since there is no need of defining data models and constraints. Nonetheless,
security in NoSQL is still a fairly new topic.

8 Conclusion

We have addressed the problem of FGAC. We show that the ABAC model
which databases are moving to cannot enforce FGAC due to its limitation
on pre-defined attributes and global variables. Two models for authorizing
are described - the Truman and Non-Truman model. The study of the Non-
Truman model’s set of conference rules and validity test is still not complete
which is why database providers are still hesitant to implement them. We
present a workaround to show it can be done using existing tools. Related
problems including mapping from policy language to querying language and
security problems in NoSQL are also mentioned.

References

[1] H. N. P. Bao and C. Manuel, “A model-driven approach for enforcing
fine-grained access control for sql queries,” Springer Nature Computer
Science, 2021.

[2] C. Strozzi, “Nosql: A relational database management system,”
Lainattu, vol. 5, p. 2014, 1998.

[3] J. DeTreville, “Binder, a logic-based security language,” in Proceedings
2002 IEEE Symposium on Security and Privacy. IEEE, 2002, pp.
105–113.

[4] R. L. Rivest and B. Lampson, “Sdsi-a simple distributed security in-
frastructure.” Crypto, 1996.

23

[5] “Writing conditions for Cloud Firestore Security Rules — Firebase
documentation,” 2019, https://firebase.google.com/docs/firestore/
security/rules-conditions.

[6] “Rule Expressions MongoDB Realm,” n. d., https://docs.mongodb.
com/realm/rules/expressions/.

[7] “IAM JSON policy elements: Condition - AWS Identity and Ac-
cess Management,” 2013, https://docs.aws.amazon.com/IAM/latest/
UserGuide/reference\ policies\ elements\ condition.html.

[8] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide
to attribute based access control (abac) definition and considerations
(draft),” NIST special publication, vol. 800, no. 162, pp. 1–54, 2013.

[9] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending query
rewriting techniques for fine-grained access control,” in Proceedings of
the 2004 ACM SIGMOD international conference on Management of
data, 2004, pp. 551–562.

[10] Z. Zhang and A. O. Mendelzon, “Authorization views and conditional
query containment,” in International Conference on Database Theory.
Springer, 2005, pp. 259–273.

[11] B. van Velden, J. Voorbij, and L. Breure, “Authorized access to dy-
namic spatial-temporal data using the truman model,” Department
of Information and Computing Sciences. Utrecht University, Utrecht,
2007.

[12] K. Salem, “Fine-grained database access control,” 2007.

[13] A. Y. Halevy, “Answering queries using views: A survey,” The VLDB
Journal, vol. 10, no. 4, pp. 270–294, 2001.

[14] “Blimey! Whats Axiomatics Reverse Query? -
Axiomatics,” 2013, https://www.axiomatics.com/
blimey-what-s-axiomatics-reverse-query/.

[15] “Securely query data — firebase documentation,” n. d.,
https://firebase.google.com/docs/firestore/security/rules-query#
queries and security rules.

[16] P. Colombo and E. Ferrari, “Fine-grained access control within nosql
document-oriented datastores,” Data Science and Engineering, vol. 1,
no. 3, pp. 127–138, 2016.

24

A Source code for section 6

Figure 4: Generated Javascript stored functions

// read_lecturers_name

exports = function(callerId, role, doc){

switch (role) {

case "lecturer":

return doc._id == callerId;

}

return false;

};

// read_lecturers_name

exports = function(callerId, role, doc){

switch (role) {

case "lecturer":

return doc._id == callerId;

}

return false;

};

// getAllLecturers

exports = async function(callerId, role){

const lecturers = context.services.get("mongodb-atlas").db("test

").collection("lecturers")

let res = await lecturers.find().toArray()

.then(function(result) { result.forEach(function(doc) {

if (!context.functions.execute("read_lecturers_name",

callerId, role, doc)) throw "Not authorized!"

if (!context.functions.execute("read_lecturers_age",

callerId, role, doc)) throw "Not authorized!"

})

return result;

})

return JSON.stringify(res);

};

Figure 5: Generating code using Javascript EJS

var policy = require("./policy.json")

var endpoint = require("./query-endpoint.json")

var parser = require("./queryParser.js")

var ejs = require("ejs")

function readPolicy() {

var arr = []

var roles = []

var protected = []

25

policy.forEach(function(p) {

p.roles.forEach(function(ro) {

roles.push(ro)

p.actions.forEach(function (a) {

p.resources.forEach(function (re) {

if (re.collection in protected) {

protected[re.collection].push(re.field)

} else {

protected[re.collection] = [];

protected[re.collection].push(re.field)

}

arr.push({

role: ro,

action: a,

collection: re.collection,

field: re.field,

auth: p.auth

})

})

})

})

})

roles = Array.from(new Set(roles)) // remove duplicate

return {arr, roles, protected};

}

function readEndpoint() {

return endpoint

.map(function(q) {

return {

...q,

...parser.parse(q.query)

}

})

.map(function(r) {

r.fields = r.projectionField

if (!(r.fields && r.fields.length)) { // if not an array or

empty array, do not process

r.fields = readPolicy().protected[r.collection]

}

return r

})

}

let roles = readPolicy().roles

readPolicy().arr.forEach(async function(p) {

let temp1 = await ejs.renderFile("template_helper1.ejs", {...p,

roles})

26

console.log(temp1)

})

readEndpoint().forEach(function (q) {

ejs.renderFile("main_procedure.ejs", q, function(err, str) {

if (err) throw new Error(‘\nCODE: ${err.code}\nMESSAGE: ${err

.message}‘)

console.log(str)

})

})

Figure 6: EJS templates

// authorization function template

function <%= action %>_<%= collection %>_<%= field %> (callerId,

role, doc) {

switch (role) { <% for (var i=0; i<roles.length; i++) { %>

case "<%= roles[i] %>":

return <%= auth %>;

<% } %>

}

return false;

}

// main stored function template

async function <%= name %>(callerId, role) {

const <%= collection %> = context.services.get("mongodb-atlas").

db("test").collection("<%= collection %>")

let res = await <%= query %>.toArray()

.then(function(result) { result.forEach(function(doc) { <%

for (var i=0; i<fields.length; i++) { %>

if (<%= fields[i] %> in doc) {

if (!context.functions.execute("<%= action %>_<%=

collection %>_<%= fields[i] %>", callerId, role,

doc)) throw "Not authorized!"

}<% } %>

})})

return JSON.stringify(res);

}

27

