

COPYRIGHT WARNING

This paper is protected by copyright. You are advised to print or download ONE

COPY of this paper for your own private reference, study and research purposes. You

are prohibited having acts infringing upon copyright as stipulated in Laws and

Regulations of Intellectual Property, including, but not limited to, appropriating,

impersonating, publishing, distributing, modifying, altering, mutilating, distorting,

reproducing, duplicating, displaying, communicating, disseminating, making

derivative work, commercializing and converting to other forms the paper and/or any

part of the paper. The acts could be done in actual life and/or via communication

networks and by digital means without permission of copyright holders.

The users shall acknowledge and strictly respect to the copyright. The recitation must

be reasonable and properly. If the users do not agree to all of these terms, do not use

this paper. The users shall be responsible for legal issues if they make any copyright

infringements. Failure to comply with this warning may expose you to:

 Disciplinary action by the Vietnamese-German University.

 Legal action for copyright infringement.

 Heavy legal penalties and consequences shall be applied by the competent

authorities.

The Vietnamese-German University and the authors reserve all their intellectual

property rights.

VIETNAMESE – GERMAN UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

Frankfurt University of Applied Sciences

Faculty 2: Computer Science and Engineering

RESEARCH AND IMPLEMENTAION OF ARTIFICIAL INTELLIGENCE

INTO THE INTERNET OF THINGS USING NVIDIA JETSON NANO

Full name: Bui Nhien Loc

Matriculation number: 15635

First supervisor: Dr. Tran Hong Ngoc

Second supervisor: Ms. Pham Ngoc Giau

BACHELOR THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF BACHELOR ENGINERRING

IN STUDY PROGRAM COMPUTER SCIENCE, VIETNAMESE – GERMAN UNIVERSITY, 2023

Binh Duong, Vietnam

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Abstract

This bachelor’s thesis explores the integration of Artificial Intelligence (AI) into Internet of
Things (IoT) devices using NVIDIA Jetson Nano as the dedicated AI platform/edge device.
The objective is to enhance the capabilities of IoT devices and enable them to autonomously
perform sophisticated data analysis and decision-making tasks, improving overall efficiency and
effectiveness.

The study begins with the inspiration and motivation for this project, followed by a literature
review, assessing AI’s potential applications, challenges, and benefits in IoT systems. The re-
search then delves into the technical aspects of NVIDIA Jetson Nano, investigating its compact
size, high-performance computing capabilities, and software libraries for seamless AI model de-
ployment on resource-constrained IoT devices.

A prototype IoT device integrated with NVIDIA Jetson Nano is developed, capturing video
footage and then applying AI algorithms for real-time analysis to extract the information needed
for IoT decision-making. The results and foundation of this prototype can be used to expand
and implement it in any facet of life. The topic is still being discussed and improved even after
this thesis.

Keywords: Artificial Intelligence, Internet of Things, AIoT, facial recognition, Jetson Nano

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 1

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Abbreviation

Acronyms Meaning
AI Artificial Intelligence
IoT Internet of Things
AIoT Artificial Intelligence of Things
QR code Quick Response code
YOLO You Only Look Once
GPU Graphical Processing Unit
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
PC Personal Computer
ARM Advanced RISC Machines
RISC Reduced Instruction Set Computing
LPDDR Low Power Double Data Rate
SoC System on Chip
TOPS Tera Operations Per Second
TFOPS Tera Floating-Point Operations Per Second
GFLOPS Giga Floating-Point Operations Per Second
mAP Mean Average Precision
AUC Area Under Curve
IoU Intersection over Union
Pascal VOC Pascal Visual Object Classes
MS COCO Microsoft Common Objects in Context
fps frame per second
SORT Simple Online and Realtime Tracking
MOT Multi-Object Tracking
MQTT Message Queuing Telemetry Transport
UUID Universal Unique Identifier
POV Point Of View
ZeroMQ Zero Message Queue
ImageZMQ Image Zero Message Queue
IP address Internet Protocol address
CDN Content Delivery Network
AVC Advanced Video Coding
HEVC High-Efficiency Video Coding
RTMP Real-Time Messaging Protocol
HLS HTTP Live Streaming
RTSP Real Time Streaming Protocol
OBS Open Broadcaster Software
VLC VideoLAN Client
LPR License Plate Recognition
OCR Optical Character Recognition

Table 1: Acronyms table

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 2

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

List of Figures

1 NVIDIA: World Leader in Artificial Intelligence Computing 12
2 The Jetson line interations . 13
3 Comparison between 2 object detection models on the same dataset 22
4 Example of precision and confidence changing according to confidence threshold . 22
5 Example of value gathered from Precision-Recall Curve 23
6 IoU illustrated . 23
7 Example of mAP curves . 24
8 How to recognize the same object across frames 32
9 YOLOv8 object detection and YOLOv8 object detection with tracking 33
10 Supervision counting objects example . 35
11 Translating data from YOLOv8 to Supervision 35
12 Applying counting line to the project . 36
13 Visualization of how points in LineZone work . 38
14 The modified trigger function implemented . 40
15 ThingsBoard Cloud Platform . 41
16 Things.vn Cloud Platform . 42
17 Things.vn Cloud Landing Page . 43
18 InfluxDB Platform . 43
19 InfluxDB Platform Landing Page . 44
20 An open source data collector - Fluentd . 45
21 A faster way to build and share data apps - Streamlit 47
22 An open-source distributed event streaming platform - Apache Kafka 49
23 Comparing between efficiency of different Video Compressions 55
24 An open-source robust web server - NGINX . 56
25 System Workflow V0.1a . 57
26 System Workflow V0.1b . 57
27 System Workflow V0.2a . 58
28 System Workflow V0.2b . 59
29 System Workflow V0.2c . 59
30 System Workflow V0.2d . 60
31 System Workflow V0.3a . 62
32 System Workflow V0.3b . 63
33 System Workflow V0.3 idea . 63
34 FaceNet images plotted in a 2D plain . 65
35 FaceNet Training Process . 66
36 Running Face Detection on the World’s Largest Selfie 67
37 Training Phase Implementation . 68
38 Recognition Phase Implementation . 69
39 Face Detection and Recognition process . 70
40 License Plate Recognition using EasyOCR . 71
41 Example of errors when using EasyOCR . 72
42 License Reader Implementation . 73

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 3

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

List of Tables

1 Acronyms table . 2

2 NVIDIA Jetson line comprehensive comparison 18

3 YOLO family comprehensive comparison . 24

4 YOLO modules performance on an AMD Ryzen 7 6500H CPU 27

5 YOLO modules performance accelerated by an NVIDIA GeForce RTX 3050 GPU 29

6 YOLO modules performance on the Jetson Nano 31

7 Compression type effectiveness across different video frame sizes 54

Listings

1 LineZone trigger1 for objects to enter . 39

2 LineZone trigger2 for objects to exit . 39

3 Fluentd Configuration . 46

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 4

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Table of Contents

1 Introduction 8

1.1 Idea evolution . 8

1.2 Proposal . 8

1.3 Thesis Structure . 9

1.4 Related works . 10

1.4.1 AIoT system to monitor traffic . 10

1.4.2 Security system using Facial Recognition 10

1.4.3 Check-in by Facial Recognition . 11

2 NVIDIA Jetson 12

2.1 What is the NVIDIA Jetson line? . 12

2.1.1 Overview . 12

2.1.2 Specifications and Statistics . 13

2.2 How to evaluate the AI performance of a machine 16

2.3 Comparison: the pros and cons . 16

2.4 Why choose the Jetson Nano? . 18

3 You Only Look Once 19

3.1 What is YOLO? . 19

3.1.1 Overview . 19

3.1.2 YOLO throughout the years . 19

3.2 How to evaluate the accuracy of object detection model? 21

3.2.1 Comparing between two models . 21

3.2.2 Precision-Recall Curve . 22

3.2.3 Intersection over Union . 23

3.2.4 Calculating mAP . 24

3.3 Comparison of different YOLO models . 24

4 YOLO on the Jetson Nano 25

4.1 Methodology . 25

4.2 Results . 25

4.2.1 Laptop CPU test . 25

4.2.2 Laptop GPU test . 27

4.2.3 Jetson Nano test . 29

4.3 Conclusion . 31

5 YOLOv8 tracking and logging 32

5.1 Tracking . 32

5.1.1 Overview . 32

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 5

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

5.1.2 YOLOv8 built-in tracking function . 32

5.1.3 Conclusion . 34

5.2 Logging . 34

5.2.1 Overview . 34

5.2.2 Supervision . 35

5.2.3 Conclusion . 40

6 Internet of Things of AIoT 41

6.1 Overview . 41

6.2 IoT platform choices . 41

6.2.1 Things Platform . 41

6.2.2 InfluxDB . 43

6.3 Conclusion . 44

7 Miscellaneous tools and accessorries 45

7.1 Fluentd . 45

7.2 ImageZMQ . 47

7.3 Streamlit . 47

7.4 MQTT . 48

7.5 Apache Kafka . 49

7.6 Video transmitting and streaming . 50

7.6.1 Overview . 50

7.6.2 Theory and Testing . 51

7.6.3 Content Delivery Network . 55

7.6.4 Streaming Server and Adaptive Streaming 56

8 Proposed systems 57

8.1 Version 0.1 . 57

8.2 Version 0.2 . 58

8.3 Version 0.3 . 62

9 Extension: Facial Recognition 64

9.1 Extension Context . 64

9.2 FaceNet . 64

9.2.1 Overview . 64

9.2.2 Recognising Process . 65

9.2.3 Training Process . 65

9.3 YOLO + FaceNet . 66

9.3.1 Overview . 66

9.3.2 Detecting Faces . 66

9.3.3 Usage in Training Phase . 67

9.3.4 Usage in Recognition Phase . 67

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 6

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

9.4 Implementation . 68

10 Extension: License Plate Recognition 71

10.1 Extension Context . 71

10.2 EasyOCR . 71

10.3 Implementation . 73

10.3.1 Isolated implementation . 73

10.3.2 Propose implementation and Integration 74

11 Conclusion 76

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 7

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

1 Introduction

As we transition towards Society 5.0, an extraordinary convergence between cyberspace and
physical space comes to light. In the preceding era of Society 4.0, known as the age of information,
the Internet acted as a conduit for searching, retrieving, and analyzing data from the vast realms
of cyberspace. However, in Society 5.0, the focus shifts toward seamlessly integrating Artificial
Intelligence (AI) into cyberspace. AI now takes center stage, empowered to analyze immense
volumes of big data and subsequently relay the outcomes to humans in physical space through
diverse mediums.

1.1 Idea evolution

The project’s inception took root during my internship period, where I had an offer to develop
a solution for a company’s assembly line. The proposed solution involved scanning QR codes
labeled on assembled products to track their progress and ensure quality control. However, as I
delved deeper into the intricacies of the process, I noticed room for improvement and innovation.

The initial idea revolved around using the Internet of Things (IoT) technology to automate the
detection and handling of defective products. Integrating IoT devices into the assembly line
would automatically identify faulty items through the scanned QR codes. These flawed products
would then be sorted out for removal or potential reusability, streamlining the production process
and minimizing wastage.

As the concept grew and evolved, I realized that further enhancements could be made to the
system. The integration of Artificial Intelligence emerged as a game-changer, promising to take
the footage-capturing process to the next level. By deploying even a simple AI-powered video-
processing algorithm, the system could analyze the footage captured by cameras stationed along
the assembly line. This AI-driven analysis would enable extracting detailed information from the
images, such as detecting subtle defects, assessing product quality, and even predicting potential
issues before they escalate.

The information extracted through AI analysis would then be logged and integrated into the
existing IoT system. This enriched data repository would provide invaluable insights into the
assembly line’s performance, quality trends, and potential areas for optimization. The synergy
between AI and IoT would enable the system to make more informed decisions, enhance overall
productivity, and ensure a seamless flow of operations.

1.2 Proposal

The version of the system proposed in this thesis boasts remarkable versatility and adaptability,
making it amenable to various industries and personalized applications. Originally designed to
detect defective products in an assembly line setting, the underlying AIoT infrastructure can
seamlessly undergo modifications to cater to a wide range of use cases.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 8

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

In industrial settings, the system’s capabilities extend beyond defect detection. By fine-tuning
the AI algorithms and reconfiguring the IoT components, it can be repurposed to enhance quality
control in diverse manufacturing processes. Beyond manufacturing, the proposed system finds
applications in security and surveillance domains. With minor adjustments, it can transform into
a comprehensive security system, proficient in tracking individuals and vehicles in a designated
area.

With the latest extension, it can also be used as a security checkpoint or just simply check for
attendance. As a security checkpoint, the system can be strategically deployed at access points,
entrances, or critical locations to monitor and regulate the flow of people or vehicles. The
integration of facial recognition algorithms enables the system to accurately identify authorized
personnel, granting them seamless entry while efficiently detecting and flagging unauthorized
individuals. By cross-referencing captured data with an established database, the system can
rapidly identify potential threats or persons of interest, enhancing overall security in sensitive
environments such as airports, government buildings, or high-security facilities. Many companies
with various successes.

All these advancements are made possible by harnessing the computational prowess and versa-
tility of the NVIDIA Jetson Nano as the foundational base for the system. The Jetson Nano’s
compact size, high-performance computing capabilities, and power efficiency are pivotal in en-
abling seamless integration of AI and IoT technologies, empowering the system to excel in various
complex tasks. It is also a great alternative to using an AI-powered camera. Similar systems
have already been deployed, opting for non-AI cameras due to financial constraints.

1.3 Thesis Structure

For this thesis, the first thing on the agenda is to explore the world of Embedded Computing
Systems by NVIDIA, more specifically, their line of NVIDIA Jetson. This part includes an
overview of the NVIDIA Jetson line, comparing the specifications, pros, cons, and prices of the
Jetson Nano, Jetson Xavier, and Jetson TX.

The AI aspect of the project is covered in two sections. The first section discusses YOLO (You
Only Look Once) and its evolution, from its historical background to the latest version (e.g.,
YOLOv8). The latter is emphasized for its superiority in real-time object detection. The second
section delves into YOLO model accuracy and its tracking function, highlighting how the latest
version improves tracking capabilities for object detection, while also going over which version
is the most suitable for the chosen edge device.

IoT database integration is explored as an integral part of the project, elucidating its role in man-
aging, storing, and retrieving data for seamless AI integration. This project is also concerned
with telecommunication as the actual user of the product will also want to see the detection/-
footage live from the comfort of their device of choice. This aspect will go over the streaming
concept, video compression, and streaming videos through the use of NGINX as a server.

Facial recognition, achieved through the combination of Facenet and YOLOv8, is explained

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 9

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

in-depth, highlighting the advantages it brings to the proposed system, and how this can be
implemented in a school/workplace setting.

Lastly, the proposed system’s architecture is presented, encompassing all the discussed compo-
nents. The thesis concludes with an outlook on the system’s generational development, foreseeing
future advancements and potential areas of improvement to revolutionize the field of AI in IoT.

1.4 Related works

In recent years, the integration of AI with IoT has garnered significant attention due to its
potential to revolutionize various industries and enhance the functionality of everyday devices.
This section provides an overview of the existing literature and related research in the field of
AIoT systems, highlighting key trends, methodologies, and contributions.

1.4.1 AIoT system to monitor traffic

In June 2023, a deployment of four cameras, each equipped with an AI Box, was initiated
to monitor the Thai Ha crossing bridge in Ha Noi. Despite the article’s title suggesting the
utilization of AI cameras, the system actually employs standard cameras integrated with IoT
boxes housing AI modules for processing the camera feed. The primary objective of this setup is
to identify vehicles, primarily trucks and buses, exceeding a height of 2.2 meters. Upon detection
of a qualifying object, an LED display situated at the bridge’s entrance activates, discouraging
the vehicle from proceeding onto the bridge. Furthermore, the display promptly switches to
showcase the detected vehicle’s license plate number, directly addressing the driver. This system
operates with the imperative of making swift predictions to ensure accurate warnings for incoming
traffic. It is worth noting that this approach is driven by cost-effectiveness, as AI cameras are
considered prohibitively expensive. Currently undergoing testing, the system has ambitions to
extend its application to other areas in the future.

1.4.2 Security system using Facial Recognition

MyAloha, a dynamic tech company headquartered in the vibrant landscape of Vietnam, is ded-
icated to pushing the boundaries of technology and delivering innovative solutions that redefine
the way we interact with our digital world. In a world where traditional security measures often
prove inadequate for the demands of a dynamic environment, MyAloha introduces its cutting-
edge FaceID technology. This revolutionary system brings forth a paradigm shift in security,
enabling buildings and facilities to monitor entries and exits with unparalleled precision. Beyond
mere surveillance, FaceID possesses the astute capability to discern authorized personnel, effec-
tively transforming the binary code of 0s and 1s into the seamless operation of opening doors and
gates, thereby streamlining access management. Furthermore, it serves as a vigilant guardian,
swiftly identifying individuals of concern and promptly alerting the appropriate authorities.

The mechanics of this innovative system are as fascinating as they are effective. New faces

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 10

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

are seamlessly incorporated into the system by uploading a portrait of an individual, which
subsequently serves as a foundational dataset. The magic then unfolds as the system employs
this image to meticulously construct a highly detailed 3D model of the person’s head. This
sophisticated process transforms the abstract concept of facial recognition into a tangible, three-
dimensional representation, enhancing the system’s accuracy and reliability.

1.4.3 Check-in by Facial Recognition

Amidst the COVID-19 pandemic, Vinpearl, a renowned chain of hotels, resorts, and entertain-
ment destinations in Vietnam, took an innovative step that set a pioneering precedent in the
country’s hospitality industry. In response to the pressing need for reduced physical contact and
heightened safety measures, Vinpearl introduced a groundbreaking Contactless Check-In System
utilizing Facial Recognition technology, a first of its kind in Vietnam.

The ingenious system was meticulously designed to minimize direct human interaction while
concurrently enhancing the efficiency of the booking and reservation process. Since its initial
implementation in 2019, the system has undergone a remarkable evolution, steadily replacing
traditional staff-assisted procedures with automated ticket and reservation verification processes.

In 2023, Vinpearl’s Contactless Check-In System reached an apex of sophistication. After arriving
at the resort, the guests check in by having their picture taken and this data can be used for
other services. Guests can now seamlessly book a wide array of services offered by Vinpearl,
make advance payments, and subsequently, upon arrival, have their faces scanned by a facial
recognition system. This innovative process not only ensures a swift and secure check-in but also
cross-references the guest’s facial data to ascertain the availability of the requested services.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 11

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

2 NVIDIA Jetson

The section goes over the differences between the Jetson products that NVIDIA provided and
how they affect the final decision of using the Jetson Nano line for the project.

2.1 What is the NVIDIA Jetson line?

2.1.1 Overview

The NVIDIA Jetson line is a series of highly efficient, low-power compute modules embedded in
computing platforms that have been specifically designed to elevate AI at the edge. This line has
been developed by NVIDIA, a well-known to be GPU manufacturer. They are also a renowned
pioneer in the fields of AI and GPU computing, with the sole aim of providing a comprehensive
range of hardware and software solutions that cater to the diverse needs of AI-driven applications
across a wide range of industries.

Figure 1: NVIDIA: World Leader in Artificial Intelligence Computing

In 2014, NVIDIA introduced the first Jetson development kit, the NVIDIA Jetson TK1. This
platform was a game-changer for embedded AI computing. The Tegra K1, NVIDIA’s first mobile
processor with advanced features and architecture similar to a modern desktop GPU, paved the
way for embedded devices to use the same CUDA code as desktop GPUs, resulting in similar
levels of GPU-accelerated performance. This made it a popular choice among over 100,000
developers.

Since then, the Jetson line has seen several iterations, each boasting increased performance and
enhanced features to cater to the growing AI needs of diverse applications. Currently, some
iterations, from lowest to highest computing power, provided on the official NVIDIA website
include Jetson Nano, Jetson TX2, Jetson Xavier, and the latest line, Jetson Orin.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 12

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

(a) Jetson Nano (b) Jetson TX2

(c) Jetson Xavier (d) Jetson Orin

Figure 2: The Jetson line interations

2.1.2 Specifications and Statistics

a) Jetson Nano

The NVIDIA Jetson Nano is a remarkable embedded computing platform. With the tag line:
"Bringing the Power of Modern AI to Millions of Devices.", it is perfect for beginners to start
learning about AI and robotics in the real world. Introduced by NVIDIA in March 2019, the
Jetson Nano has revolutionized the landscape of edge AI computing, empowering developers,
researchers, and enthusiasts to deploy advanced artificial intelligence applications in a compact
and cost-effective form factor.

Although it is said to have the lowest computing power among NVIDIA’s current offerings,
it still boasts a significant amount of specifications. At the heart of the Jetson Nano lies a
quad-core ARM Cortex-A57 CPU, delivering substantial processing power to handle complex

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 13

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

tasks efficiently. Complementing this CPU is a 128-core NVIDIA Maxwell GPU, which provides
accelerated computing for AI workloads and computer vision tasks, ensuring swift and accurate
data analysis.

With two options for the memory of 2GB and 4GB of LPDDR4 RAM, the Jetson Nano can
efficiently handle large datasets and memory-intensive AI models. Depending on the size and
scope of the project, it is important to choose ample memory capacity that allows for seamless
multitasking and facilitates real-time inference in AI applications.

The Jetson Nano and many of its peer carries a standout feature of support for popular AI
frameworks like TensorFlow, PyTorch, and Caffe, enabling seamless integration into existing AI
workflows. Just as alluded to in the previous section, it also offers NVIDIA’s CUDA-X just like
any modern computer that includes an NVIDIA GPU. This allows the machine to harness the
power of the GPU to accelerate AI training and inference.

Despite its exceptional performance, the Jetson Nano remains remarkably energy-efficient, con-
suming as little as 5 watts under typical loads. This is essential and the deciding factor for
using a system like this instead of a laptop or personal computer. It is expected for the system
to work around the clock, with hardly any power consumption to prolong operation without
compromising on performance.

b) Jetson TX2

Also part of the NVIDIA Jetson line is the Jetson TX2 series. As the successor of the discontinued
Jetsono TX1, it is also an excellent option for AI and embedded IoT applications. Introduced
back in March 2017, the Jetson TX2 series represents a significant advancement in the Jetson
family, catering to the demands of high-performance AI applications, computer vision tasks, and
autonomous machines.

Significant improvements compared to the Jetson Nano are the TX2’s 256-core NVIDIA Pascal
GPU, combined with a dual-core NVIDIA Denver 2 CPU and a quad-core ARM Cortex-A57
CPU. This particular multi-core architecture is designed to effectively handle tasks that require
high performance as well as low power, allowing for smooth multitasking and real-time data
processing.

As it is called the Jetson TX2 series, there are multiple versions of the TX2, including TX2 NX,
TX2 4GB, TX2, and TX2i. Similar to the Jetson Nano are the multiple options for LPDDR4
RAM: 4GB, 8GB, and 8GB with ECC Support.

Having more computing power, however, will cause the system to consume more energy to keep
up with its exceptional performance capabilities, around 7.5 watts under typical loads. This is
still a major improvement compared to the typical energy consumption of a laptop or PC.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 14

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

c) Jetson Xavier

The Xavier architecture is shared by two sub-series, which are the NVIDIA Jetson AGX Xavier
Series and Jetson Xavier NX Series. Introduced at around the same time, during the winter
of 2018, they represent two powerful and innovative lines of embedded computing platforms
designed to accelerate AI at the edge.

Before the introduction of the Orin architecture, the AGX line was considered to be the epitome
of AI performance and versatility that the Jetson was capable of providing. Powered by the
NVIDIA Xavier SoC, it features an octa-core NVIDIA Carmel CPU, a 512-core NVIDIA Volta
GPU, and LPDDR4x RAM.

Followed just behind the AGX is the NX line. Sharing the NVIDIA Xavier Soc, while having a
384-core NVIDIA Volta GPU, and a 6-core NVIDIA Carmel CPU. Not a major downgrade from
AGX, considering the NX consumes around 7.5 watts on the low-end and around 10W on the
high-end, while the AGX consumes about 10W all around.

With these features, combined with the mentioned benefits of the Jetson line, the Xavier line
boasts higher AI performance and more memory, making it suitable for computationally in-
tensive, while offering more energy-efficient and compact alternatives without compromising AI
capabilities.

d) Jetson Orin

Similar to the Xavier line, many sub-series of the Orin line are being introduced during 2022 and
2023. Being the newest in the Jetson line, these machines carried a lot of computing power.

The products are still being released and developed for the near future, so the information
regarding them is scarce and limited. That being said, with the released varieties, they boast
the broadest range of selections for AI development compared to their predecessors.

On the low end of the spectrum, the Jetson Orin Nano 4GB provides a 512-core NVIDIA Ampere
GPU, with a 6-core Arm Cortex CPU. Meanwhile, the Jetson AGX Orin Developer Kit, a high-
end option, has a 2048-core NVIDIA Ampere GPU, and a 12-core Arm Cortex CPU.

All of them are equipped with the latest line of LPDDR5 RAM, with the lowest option pro-
viding 4GB, and the highest being 64GB. This combined the previous versions’ benefits with
extra upgrades and improvements, the Orin line is shaping up to be the future of AI and edge
development.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 15

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

2.2 How to evaluate the AI performance of a machine

Evaluating the performance of AI on a computer involves assessing its ability to handle complex
computational tasks, such as machine learning, deep learning, and neural network processing.
AI performance evaluation is crucial for determining a computer’s suitability for running AI
workloads, such as training models, executing inference, and real-time processing of data. To
accurately measure AI performance, various metrics are considered, including speed, throughput,
accuracy, and efficiency.

One key metric used to quantify AI performance in modern computers and AI accelerators is
TOPS, which stands for Tera Operations Per Second. TOPS represents the number of trillion
operations that a computer or AI accelerator can perform in a single second. It serves as a crucial
performance indicator for AI tasks, where massive parallel processing capabilities are required
for tasks like neural network computations.

In the context of AI, operations refer to calculations performed during the execution of algo-
rithms, particularly in deep learning models. These operations typically involve matrix multipli-
cations, additions, and other mathematical operations that are fundamental to neural network
computations.

TOPS provides a standardized way to compare the processing power of different AI accelerators
and GPUs, making it easier for researchers, developers, and hardware manufacturers to under-
stand the computational capabilities of a device. It allows them to make informed decisions
about which hardware is best suited for their specific AI workloads, taking into account factors
like model complexity, data size, and real-time requirements.

In the next section, a comparison between the different Jetson machines will be drawn. Along
with TOPS, there are a few other measurements to determine the AI performance, those being
GFLOPS and TFLOPS. GFLOPS stands for Giga Floating-Point Operations Per Second. Similar
to TOPS, it is a measure of computing performance, but at a smaller scale (1 TOPS is equivalent
to 1000 FLOPS). Meanwhile, TFLOPS stands for Tera Floating-Point Operations Per Second.
Like TOPS, it is a measure of computing performance, but it specifically focuses on floating-point
operations, which are arithmetic operations involving real numbers with decimal points.

2.3 Comparison: the pros and cons

This section serves as a comprehensive comparison between the NVIDIA Jetson products, includ-
ing their advantages and disadvantages. Having discussed around 20 unique products spanning
4 system architectures, only the notable module of each architecture will be taken into account.
Also of note is the early reviews for other Jetson Orin lines, as they are still being released, the
comparison made might not be accurate, retrospectively.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 16

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Jetson Nano
Developer Kit

Jetson TX2 NX Jetson Xavier NX
8GB

Jetson Orin Nano
4GB

AI Per-
formance

472 GFLOPS 1.33 TFLOPS 21 TOPS 20 TOPS

GPU
128-core NVIDIA
Maxwell™ GPU

256-core NVIDIA
Pascal™ GPU

384-core NVIDIA
Volta™ GPU with
48 Tensor Cores

512-core NVIDIA
Ampere™ GPU
with 16 Tensor

Cores

CPU

Quad-core ARM
Cortex-A57 MPCore

processor

Dual-Core NVIDIA
Denver 2 64-Bit
CPU Quad-Core
ARM Cortex-A57
MPCore processor

6-core NVIDIA
Carmel Arm v8.2

64-bit CPU 6MB L2
+ 4MB L3

6-core Arm
Cortex-A78AE v8.2
64-bit CPU 1.5MB

L2 + 4MB L3

Memory 4 GB 64-bit
LPDDR4 25.6 GB/s

4GB 128-bit
LPDDR4 51.2GB/s

8GB 128-bit
LPDDR4x 59.7GB/s

4GB 64-bit
LPDDR5 34 GB/s

Storage 16GB eMMC 5.1 16GB eMMC 5.1 16GB eMMC 5.1 (Supports external
NVMe)

Video
encoding

1x 4K30 (H.265)
2x 1080p60 (H.265)

1x 4K60 (H.265)
3x 4K30 (H.265)

4x 1080p60 (H.265)

2x 4K60 (H.265)
4x 4K30 (H.265)

10x 1080p60 (H.265)
22x 1080p30 (H.265)

1080p30 supported
by 1-2 CPU cores

Video
decoding

1x 4K60 (H.265)
4x 1080p60 (H.265)

2x 4K60 (H.265)
7x 1080p60 (H.265)
14x 1080p30 (H.265)

2x 8K30 (H.265)
6x 4K60 (H.265)
12x 4K30 (H.265)

22x 1080p60 (H.265)
44x 1080p30 (H.265)

1x 4K60 (H.265)
2x 4K30 (H.265)

5x 1080p60 (H.265)
11x 1080p30 (H.265)

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 17

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Power
Con-

sumption
5-10W 7.5W - 15W 10W - 20W 7W - 10W

Pros

- Cheap, suitable for
newbies, amateurs.

- Mature, robust
platform that offers
a lot of options.

- High GPU power
and processing.

- A powerhouse that
can handle
simulations, the
most modern AI
module, and 4K
video playback.

Cons

- Doesn’t have
built-in WIFI.
- Acceptable to
power failure and
will turn off when
running heavy
applications.

- Hard to set up. - Quite pricy.
- Higher power
consumption and
heat generation
compared to other
products.

- Not beginner
friendly
- Very pricy while
being very
overqualified for
everyday usage.

Table 2: NVIDIA Jetson line comprehensive comparison

2.4 Why choose the Jetson Nano?

Based on the title and context of this thesis, it is clear that the Jetson Nano was selected for this
project. The decision was made based on two critical factors. Firstly, the cost of the machines
was taken into account, as this is also an alternative to expensive AI cameras due to financial
constraints. Secondly, even though the Jetson Nano is the least powerful system among the
options, it is sufficient for the project’s foundation. If it can handle the inference time and
computing power without any issues, more powerful machines can also handle the task.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 18

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

3 You Only Look Once

You Only Look Once (YOLO) is one of the most popular model architectures and object detection
algorithms. This will act as the AI part of the AIoT system.

3.1 What is YOLO?

3.1.1 Overview

Object detection is a fundamental task in computer vision, enabling machines to identify and
locate objects within images or video frames. Over the years, various techniques and algorithms
have been developed to tackle this challenging problem. One groundbreaking approach that
revolutionized the field of object detection is YOLO.

The Yolo algorithm was introduced back in 2016. Before that, object detection algorithms
typically employed multi-stage pipelines, which involved region proposal methods to identify
potential object regions followed by classification and refinement. While these methods achieved
good accuracy, they were computationally expensive and time-consuming, limiting their real-time
applicability.

In contrast, YOLO approached object detection as a single regression problem, using a deep
neural network to directly predict bounding boxes and class probabilities for objects within an
image. By considering the entire image in one shot, YOLO achieved a significant speed boost,
allowing it to process images at a near real-time speed.

Since then, there have been many versions of YOLO, with the latest being YOLOv8. The next
section will discuss each version and its advancements throughout the generations.

3.1.2 YOLO throughout the years

a) YOLOv1

The YOLO network, specifically YOLOv1, was the first object detection model to integrate
bounding box drawing and class label identification into a single, differentiable network.

Deep learning-based detection methods can be divided into two categories: two-stage detection
algorithms, like RCNN and Fast-RCNN, which make multiple-stage predictions, and one-stage
detectors like SSD, EfficientDet, and YOLO. YOLO is not the only one-stage detection model,
but it is generally more efficient than others in terms of speed and accuracy. If we view the
detection problem as a one-step regression approach for determining the bounding box, YOLO
models are typically faster and smaller, making them easier to learn and deploy, particularly on
devices with limited computing resources.

Despite its speed advantage, YOLOv1 had some limitations in accurately detecting small objects
and handling overlapping objects. These drawbacks led to missed detections and imprecise
localization, motivating the development of subsequent versions of YOLO.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 19

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

b) YOLOv2

In 2017, YOLOv2 was introduced as a significant upgrade to YOLOv1. YOLOv2 improved upon
YOLOv1 by introducing innovative advancements to address its weaknesses.

Several iterative enhancements were made to the architecture of YOLOv2, such as BatchNorm,
higher resolution, and anchor boxes. The addition of anchor boxes enabled the algorithm to
accurately predict objects of different sizes and aspect ratios.

c) YOLOv3

With the release of YOLOv3 in 2018, the YOLO (You Only Look Once) series made significant
strides in advancing object detection capabilities. One of the key advancements in YOLOv3 was
the addition of objectivity estimation to bounding box predictions. This improvement aimed
to enhance the quality of object localization. By introducing objectivity estimation, the model
became better at determining the presence of objects within bounding boxes, reducing false
positives, and improving the accuracy of object detection.

The addition of skip connections to Darknet-53 improved YOLOv3’s performance by allowing
information to flow more easily between layers. This enabled the model to detect objects of
varying sizes with greater accuracy at three different levels of detail. This multi-scale approach
overcame limitations in previous versions and improved the localization of small objects.

d) YOLOv4 and YOLOv5

In 2020, YOLOv4 was launched after extensive experimentation and research. It combines several
new techniques to enhance the accuracy and speed of the convolutional neural network. Extensive
experiments were conducted in the paper introducing this version of YOLO and testing various
GPU architectures. The results showed that YOLOv4 outperforms all other object detection
network architectures in terms of both speed and accuracy.

In the same year, YOLOv5 was released with even more improvements, making it one of the
official state-of-the-art models. YOLOv5 provides a range of object detection architectures that
come pre-trained on the MS COCO dataset. This model is also natively implemented in PyTorch,
which removes the limitations of the Darknet framework that was previously based on the C
programming language and not built in terms of production environments. This allows for
greater ease of use and support for production environments, making it a popular choice among
developers.

e) YOLOv6 and YOLOv7

In 2022, YOLOv6 and YOLOv7 were released. With YOLOv6, it is an improved version of the
previously popular YOLO trunk and neck. It has been designed to cater to hardware constraints
and has introduced the EfficientRep Backbone and Rep-PAN Neck. Notably, YOLOv6 has sepa-

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 20

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

rated the classification and box-regression heads, which has demonstrated enhanced performance
compared to previous versions.

Meanwhile, YOLOv7 is one of the cutting-edge object detectors in the YOLO family. This model
contains all the most advanced deep neural network training techniques. YOLOv7 builds upon
the advancements made in object detection technology through research on memory storage
and gradient propagation. It considered these factors in its development, with a focus on using
the E-ELAN last layer aggregation, an extended version of the ELAN compute unit. These
developments hold promise for further enhancing the capabilities of object detection technology
in various industries.

f) YOLOv8

Finally, YOLOv8, launch in early 2023. It is a cutting-edge model that takes the best of prior
YOLO versions and adds new advancements to make it even better. The enhanced performance
and versatility are sure to make a big difference for users.

Spearheaded by Ultralytics, a major advantage for version 8 is the framework supports all pre-
vious YOLO models, making it easy for users to switch between different versions and evaluate
their performance. YOLOv8 is still being continuously developed and improved, but early results
have shown this to be a major advancement for the YOLO family.

3.2 How to evaluate the accuracy of object detection model?

To evaluate an object detection model like YOLO, performance metrics like YOLO can be used
to see how they can be compared with each other. This category alone can have multiple methods
for the effectiveness of each model. The method of notice for this application is the Mean Average
Precision (mAP).

Mean Average Precision is a widely used performance metric for evaluating the accuracy of
object detection and instance segmentation models in computer vision. It is a comprehensive
and robust evaluation metric that considers both precision and recall across multiple confidence
thresholds. mAP is particularly useful for assessing the performance of object detection models,
where precise localization and accurate classification of objects are essential. It is a great way to
see how the model performs compared to other models on the same test dataset.

3.2.1 Comparing between two models

To understand it better, here is an example of two detectors working on the same test datasets.
Figure 3 represents the red blood cells and platelets detection models powered by YOLOv3 and
EfficientDet-D0, respectively. To determine the accuracy of these two models is quite simple for
an average person, as the YOLOv3 identifies the cells more accurately, while EfficientDet-D0
wrongly detects way more cells, especially the cells close to each other, and not being able to

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 21

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

detect the ones only partially visible in the frame. However, it is essential to convert them into
numerical values throughout the dataset for scientific analysis and comparison.

(a) YOLOv3 (b) EfficientDet-D0

Figure 3: Comparison between 2 object detection models on the same dataset

3.2.2 Precision-Recall Curve

This led to another definition: The Precision-Recall Curve. Precision-Recall Curve is a way to
visualize how the module is performing as the confidence threshold is decreased. Going back to
figure 3, next to each detection is a floating number representing the confidence of the model
for that prediction. It is then we can tell if the confidence level is high (closer to 1), then the
module is pretty certain about that prediction. Of course, predictions only values from 0.1 and
0.2 should be weeded out.

Figure 4: Example of precision and confidence changing according to confidence threshold

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 22

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

This is where the confidence threshold is established. Looking at figure 5, there are 2 new metrics:
recall and precision. The recall is a measure of all the true positives, and how many predictions
the module correctly made. While precision is the ratio of correct predictions. In other words,
out of all the detections, how many of them are correct?

This is why when the confidence threshold is lower, we trade having more predictions, but a lot
of them will be incorrect. This is why the graph is at a downward slop, as the confidence is
lower, there are more predictions, which then lower the precision, and raise the recall.

Figure 5: Example of value gathered from Precision-Recall Curve

From the Precision-Recall Curve, 3 main values can be extracted. The first value is the F1
Score, which is a single estimate of the Precision-Recall Curve where the Precision and Recall
are multiplied to a single point. Next is the Area Under Curve, which is the total area under
the Precision-Recall Curve. Finally, and the most important is the Average Precision metric. It
looks at the proficient floating point estimate at various points along the curve, and the results
will be used to calculate the Mean Average Precision.

3.2.3 Intersection over Union

To test and evaluate a module, we run detections on a test dataset. This dataset has already been
annotated with the correct object and the module’s job is to make detections to be compared
with these established boxes. The IoU (Intersection over Union) is a metric to set the leniency
to determine if the module made the correct prediction.

Figure 6: IoU illustrated

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 23

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

This value represents the value between the ground truth bounding box of the test dataset and
the bounding box drawn by the module. In figure 6, it is illustrated as the green box in the
middle. By increasing the IoU, we force the module to make more accurate predictions, while
decreasing will generate the opposite effect. From there, an mAP curve can be drawn from the
multiple values of IoU.

Figure 7: Example of mAP curves

The example of mAP curves from graph 7 can be simplified by seeing the orange line as the run
with a low IoU value (from 0.05 to 0.1) so the curve is higher. However, the situation differs for
the red line, which exhibits an IoU value ranging from 0.8 to 0.9. This stricter threshold leads
to a more rapid decline in the curve.

3.2.4 Calculating mAP

From the result of the mAP curves, the mAP is calculated across various slew of IoU thresholds
and multiple different classes. Doing so will give a robust way to look at the dataset. This is
also a way to negate the problem of different models performing better at different IoU values
or having an edge over detecting certain objects.

3.3 Comparison of different YOLO models

Using the mAP and fps metrics, the models are compared to determine the version for this
project. Note that the values are calculated on two main datasets, Pascal VOC and MS COCO,
and calculated over various devices. The results may vary depending on the changes in these
variables.

Version YOLOv1 YOLOv2 YOLOv3 YOLOv4 YOLOv5 YOLOv6 YOLOv7 YOLOv8
mAP 36.4 78.6 57.9 65.7 68.9 49.1 54.8 60
fps 45 67 46 62 125 267 83 500

Table 3: YOLO family comprehensive comparison

From the table, a few interesting aspects appear. YOLOv1 and YOLOv2 were trained and tested
on the Pascal VOC dataset, which can make YOLOv1 and YOLOv2 seem more proficient than
they were. Meanwhile, YOLOv6 trades off having a lower inference time to have a worse mAP
compared to its predecessor. In the end, 2 models stand out for the application, YOLOv7 and
YOLOv8. In the next section, these two modules will be implemented in the Jetson Nano to
compare their performances.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 24

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

4 YOLO on the Jetson Nano

The subsequent phase involves the critical evaluation of the determined YOLO models, namely
YOLOv7 and YOLOv8, in terms of their performance when deployed on the Jetson Nano plat-
form.

4.1 Methodology

The models were trained and evaluated using the MS COCO dataset. Then on the Jetson
Nano, the necessary libraries are installed, and to keep the test as simple as possible, additional
speeding-up methods are not included. The models are compared using weights of similar ca-
pacity, with the range of inference time being charted down to calculate the fps, and the mAP
is noted in a separate validation. Also to compare the performance of the Jetson Nano, a ma-
chine with an AMD Ryzen 7 6500H with Radeon Graphics (16 vCore) CPU machine, and a
separate run accelerated by an NVIDIA GeForce RTX 3050 GPU. Additional configurations are
also added to set its effects on mAP and fps.

4.2 Results

After an extensive testing phase, here are the results.

4.2.1 Laptop CPU test

Configurations fps Inference Time (ms) mAP
YOLO images size (px) confidence IoU Min Mean Max Range Min Mean Max mAP

YOLOv7-
tiny

320 0.5 0.45 82 71.7 63.7 12.2-15.7 12.2 13.95 15.7 0.352
320 0.25 0.75 71.4 67.6 64.1 14-15.6 14 14.8 15.6 0.356
320 0.5 0.75 80 71.2 64.1 12.5-15.6 12.5 14.05 15.6 0.354
320 0.25 0.45 73 68.3 64.1 13.7-15.6 13.7 14.65 15.6 0.355
480 0.5 0.45 45.2 42.1 39.4 22.1-25.4 22.1 23.75 25.4 0.364
480 0.25 0.75 51.3 46.7 42.9 19.5-23.3 19.5 21.4 23.3 0.366
480 0.5 0.75 55.2 48.3 42.9 18.1-23.3 18.1 20.7 23.3 0.364
480 0.25 0.45 50 44.6 40.3 20-24.8 20 22.4 24.8 0.365
640 0.5 0.45 32.2 30.1 28.2 31.1-35.4 31.1 33.25 35.4 0.368
640 0.25 0.75 31.1 28.7 26.7 32.2-37.4 32.2 34.8 37.4 0.367
640 0.5 0.75 32.2 29.2 26.8 31.1-37.3 31.1 34.2 37.3 0.370
640 0.25 0.45 32.4 29.3 26.8 30.9-37.3 30.9 34.1 37.3 0.368

YOLOv7

320 0.5 0.45 16.5 15.9 15.3 60.5-65.4 60.5 62.95 65.4 0.485
320 0.25 0.75 16.7 16 15.3 60-65.3 60 62.65 65.3 0.484
320 0.5 0.75 16.6 15.6 14.7 60.2-67.9 60.2 64.05 67.9 0.487
320 0.25 0.45 18 17 16.1 55.5-62.1 55.5 58.8 62.1 0.486
480 0.5 0.45 9 8 7.1 110.7-140 110.7 125.35 140 0.496
480 0.25 0.75 8.8 8.5 8.3 114-120 114 117 120 0.497
480 0.5 0.75 8.9 8.7 8.4 112-119 112 115.5 119 0.499

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 25

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

480 0.25 0.45 9.2 8.7 8.3 109-120 109 114.5 120 0.497
640 0.5 0.45 4.9 4.7 4.6 206-217 206 211.5 217 0.511
640 0.25 0.75 5 4.8 4.6 201-217 201 209 217 0.510
640 0.5 0.75 5 4.8 4.7 202-213 202 207.5 213 0.512
640 0.25 0.45 5.2 5.1 5 192-201 192 196.5 201 0.511

YOLOv7-
e6

320 0.5 0.45 11.1 10.6 10.1 90-99 90 94.5 99 0.540
320 0.25 0.75 10.2 9.8 9.5 98.4-105 98.4 101.7 105 0.538
320 0.5 0.75 11 10.5 10 90.8-99.8 90.8 95.3 99.8 0.541
320 0.25 0.45 10.5 10.1 9.6 94.8-103.9 94.8 99.35 103.9 0.540
448 0.5 0.45 7.5 7.3 7 133-142 133 137.5 142 0.553
448 0.25 0.75 7.6 7.3 6.9 131-144 131 137.5 144 0.552
448 0.5 0.75 7.5 7.3 7.1 133-140 133 136.5 140 0.555
448 0.25 0.45 7.4 7 6.6 135-151 135 143 151 0.554
640 0.5 0.45 4.1 4.1 4 243-249 243 246 249 0.558
640 0.25 0.75 4.2 4.1 4 240-250 240 245 250 0.557
640 0.5 0.75 4 3.9 3.8 252-260 252 256 260 0.559
640 0.25 0.45 4.1 4 4 246-250 246 248 250 0.559

YOLOv8n

320 0.5 0.45 70.9 67.1 63.7 14.1-15.7 14.1 14.9 15.7 0.486
320 0.25 0.7 76.9 72.5 68.5 13-14.6 13 13.8 14.6 0.527
320 0.5 0.7 80 72.7 66.7 12.5-15 12.5 13.75 15 0.486
320 0.25 0.45 87.7 72.5 61.7 11.4-16.2 11.4 13.8 16.2 0.536
480 0.5 0.45 66.2 57 50 15.1-20 15.1 17.55 20 0.555
480 0.25 0.7 58.8 53.8 49.5 17-20.2 17 18.6 20.2 0.632
480 0.5 0.7 58.1 51.8 46.7 17.2-21.4 17.2 19.3 21.4 0.555
480 0.25 0.45 64.1 56.5 50.5 15.6-19.8 15.6 17.7 19.8 0.639
640 0.5 0.45 49.5 42.6 37.3 20.2-26.8 20.2 23.5 26.8 0.564
640 0.25 0.7 47.4 38.8 32.8 21.1-30.5 21.1 25.8 30.5 0.615
640 0.5 0.7 47.6 41.9 37.5 21-26.7 21 23.85 26.7 0.560
640 0.25 0.45 47.4 40 34.6 21.1-28.9 21.1 25 28.9 0.626

YOLOv8m

320 0.5 0.45 12 11.8 11.5 83.2-86.9 83.2 85.05 86.9 0.686
320 0.25 0.7 12.9 12.7 12.6 77.8-79.6 77.8 78.7 79.6 0.727
320 0.5 0.7 12.3 11.9 11.5 81.2-86.6 81.2 83.9 86.6 0.686
320 0.25 0.45 12.7 12 11.5 78.7-87.3 78.7 83 87.3 0.729
480 0.5 0.45 7.1 6.7 6.3 141.2-158.9 141.2 150.05 158.9 0.735
480 0.25 0.7 7 6.7 6.4 143.6-156.7 143.6 150.15 156.7 0.768
480 0.5 0.7 6.8 6.1 5.5 147.5-181.1 147.5 164.3 181.1 0.740
480 0.25 0.45 6.8 6.6 6.3 146-159.1 146 152.55 159.1 0.765
640 0.5 0.45 4.1 4 4 244.5-252 244.5 248.25 252 0.733
640 0.25 0.7 4 4 3.9 247.1-256.4 247.1 251.75 256.4 0.770
640 0.5 0.7 4.2 3.9 3.7 240.7-271.1 240.7 255.9 271.1 0.734
640 0.25 0.45 4.2 4.1 3.9 238.1-254.4 238.1 246.25 254.4 0.771

YOLOv8l

320 0.5 0.45 7.3 7.1 6.9 136.9-145.3 136.9 141.1 145.3 0.715
320 0.25 0.7 7.9 7.8 7.7 127.2-130.2 127.2 128.7 130.2 0.774
320 0.5 0.7 7.7 7.1 6.7 130.7-149.3 130.7 140 149.3 0.716
320 0.25 0.45 7.9 7.7 7.5 126.7-133.6 126.7 130.15 133.6 0.772
480 0.5 0.45 3.8 3.7 3.7 264.9-270.7 264.9 267.8 270.7 0.769
480 0.25 0.7 3.8 3.8 3.7 264.0-268.9 264 266.45 268.9 0.794
480 0.5 0.7 3.8 3.6 3.4 262.2-296 262.2 279.1 296 0.772

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 26

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

480 0.25 0.45 3.8 3.6 3.4 262.1-292 262.1 277.05 292 0.792
640 0.5 0.45 2.6 2.4 2.3 390-431 390 410.5 431 0.762
640 0.25 0.7 2.6 2.4 2.3 390.5-441.7 390.5 416.1 441.7 0.796
640 0.5 0.7 2.5 2.3 2.2 398.9-462 398.9 430.45 462 0.767
640 0.25 0.45 2.5 2.5 2.5 396.3-406.5 396.3 401.4 406.5 0.792

Table 4: YOLO modules performance on an AMD Ryzen 7 6500H CPU

Without acceleration, the fps for both YOLOv7 and YOLOv8 are not very impressive. The
mean fps of each test case is colored by the colors red and green. In theory, a modern camera
records at a rate of 30 fps, similar to a human eye that can recognize and see at 30-60 fps. So
to get live (real-time) detection, the models have to reach a study rate of 30 fps or above. The
inference time range is recorded in a Google Sheet and then calculated to get the mean fps value.
The mean fps above 30 will be colored green with different intensity to indicate how fast can the
model performs. On the other hand, red represents the mean fps values under 30, with the color
intensifying as it approaches 0.

Having detection running under 30 fps is still acceptable for certain applications, where it is not
essential for the module to detect everything but is expected to correctly identify objects. For
instance, a system to detect traffic jams, with detections running as low as 1 fps, at any point
where there are more vehicles than the threshold, with confidence, a traffic jam is detected. This
is why it is important to test and log the fps and mAP of a module for different uses.

Next to consider is the performance of the YOLO models with speeding up using GPU.

4.2.2 Laptop GPU test

Configurations fps Inference Time (ms) mAP
YOLO images size (px) confidence IoU Min Mean Max Range Min Mean Max mAP

YOLOv7-
tiny

320 0.5 0.45 140.8 125.8 113.6 7.1-8.8 7.1 7.95 8.8 0.352
320 0.25 0.75 131.6 125 119 7.6-8.4 7.6 8 8.4 0.356
320 0.5 0.75 140.8 129 119 7.1-8.4 7.1 7.75 8.4 0.354
320 0.25 0.45 137 133.3 129.9 7.3-7.7 7.3 7.5 7.7 0.355
480 0.5 0.45 131.6 122 113.6 7.6-8.8 7.6 8.2 8.8 0.364
480 0.25 0.75 128.2 105.8 90.1 7.8-11.1 7.8 9.45 11.1 0.366
480 0.5 0.75 140.8 137.9 135.1 7.1-7.4 7.1 7.25 7.4 0.364
480 0.25 0.45 119 112.4 106.4 8.4-9.4 8.4 8.9 9.4 0.365
640 0.5 0.45 142.9 134.2 126.6 7-7.9 7 7.45 7.9 0.368
640 0.25 0.75 133.3 131.6 129.9 7.5-7.7 7.5 7.6 7.7 0.367
640 0.5 0.75 140.8 135.1 129.9 7.1-7.7 7.1 7.4 7.7 0.370
640 0.25 0.45 125 115.6 107.5 8-9.3 8 8.65 9.3 0.368
320 0.5 0.45 89.3 86.6 84 11.2-11.9 11.2 11.55 11.9 0.485

YOLOv7

320 0.25 0.75 89.3 59.2 44.2 11.2-22.6 11.2 16.9 22.6 0.484
320 0.5 0.75 87 56.3 41.7 11.5-24 11.5 17.75 24 0.487
320 0.25 0.45 87.7 83.3 79.4 11.4-12.6 11.4 12 12.6 0.486
480 0.5 0.45 78.1 41.2 7.9 12.8-35.8 12.8 24.3 35.8 0.496
480 0.25 0.75 74.1 44.7 32.1 13.5-31.2 13.5 22.35 31.2 0.497

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 27

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

480 0.5 0.75 73 49.1 37 13.7-27 13.7 20.35 27 0.499
480 0.25 0.45 71.4 45.8 33.7 14-29.7 14 21.85 29.7 0.497
640 0.5 0.45 69 38.2 26.5 14.5-37.8 14.5 26.15 37.8 0.511
640 0.25 0.75 70.9 69 67.1 14.1-14.9 14.1 14.5 14.9 0.510
640 0.5 0.75 70.9 43.5 31.3 14.1-31.9 14.1 23 31.9 0.512
640 0.25 0.45 71.4 41.8 29.6 14-33.8 14 23.9 33.8 0.511
320 0.5 0.45 49.5 39 32.2 20.2-31.1 20.2 25.65 31.1 0.540

YOLOv7-
e6

320 0.25 0.75 49.8 47.4 45.2 20.1-22.1 20.1 21.1 22.1 0.538
320 0.5 0.75 54.9 35.6 26.3 18.2-38 18.2 28.1 38 0.541
320 0.25 0.45 54.3 52.1 50 18.4-20 18.4 19.2 20 0.540
448 0.5 0.45 55.6 54.1 52.6 18-19 18 18.5 19 0.553
448 0.25 0.75 55.6 53.1 50.8 18-19.7 18 18.85 19.7 0.552
448 0.5 0.75 55.6 54.1 52.6 18-19 18 18.5 19 0.555
448 0.25 0.45 55.6 53.6 51.8 18-19.3 18 18.65 19.3 0.554
640 0.5 0.45 49.3 43.1 38.3 20.3-26.1 20.3 23.2 26.1 0.558
640 0.25 0.75 50 50 50 20-20 20 20 20 0.557
640 0.5 0.75 55.2 54.6 54.1 18.1-18.5 18.1 18.3 18.5 0.559
640 0.25 0.45 54.9 54.2 53.5 18.2-18.7 18.2 18.45 18.7 0.559

YOLOv8n

320 0.5 0.45 122 113.6 106.4 8.2-9.4 8.2 8.8 9.4 0.486
320 0.25 0.7 122 114.9 108.7 8.2-9.2 8.2 8.7 9.2 0.527
320 0.5 0.7 120.5 114.9 109.9 8.3-9.1 8.3 8.7 9.1 0.486
320 0.25 0.45 97.1 73.5 59.2 10.3-16.9 10.3 13.6 16.9 0.536
480 0.5 0.45 111.1 103.6 97.1 9.0-10.3 9 9.65 10.3 0.555
480 0.25 0.7 101 74.1 58.5 9.9-17.1 9.9 13.5 17.1 0.632
480 0.5 0.7 108.7 101.5 95.2 9.2-10.5 9.2 9.85 10.5 0.555
480 0.25 0.45 116.3 111.1 106.4 8.6-9.4 8.6 9 9.4 0.639
640 0.5 0.45 103.1 72.7 56.2 9.7-17.8 9.7 13.75 17.8 0.564
640 0.25 0.7 77.5 70.7 64.9 12.9-15.4 12.9 14.15 15.4 0.615
640 0.5 0.7 113.6 109.3 105.3 8.8-9.5 8.8 9.15 9.5 0.560
640 0.25 0.45 109.9 101 93.5 9.1-10.7 9.1 9.9 10.7 0.626

YOLOv8m

320 0.5 0.45 67.1 59.9 54.1 14.9-18.5 14.9 16.7 18.5 0.686
320 0.25 0.7 71.4 66.7 62.5 14-16 14 15 16 0.727
320 0.5 0.7 71.4 62.5 55.6 14-18 14 16 18 0.686
320 0.25 0.45 66.7 64.5 62.5 15-16 15 15.5 16 0.729
480 0.5 0.45 46.3 44.8 43.5 21.6-23 21.6 22.3 23 0.735
480 0.25 0.7 47.4 45.9 44.4 21.1-22.5 21.1 21.8 22.5 0.768
480 0.5 0.7 46.5 43.4 40.7 21.5-24.6 21.5 23.05 24.6 0.740
480 0.25 0.45 45.7 44.5 43.5 21.9-23 21.9 22.45 23 0.765
640 0.5 0.45 50 48.1 46.3 20-21.6 20 20.8 21.6 0.733
640 0.25 0.7 51.5 49.4 47.4 19.4-21.1 19.4 20.25 21.1 0.770
640 0.5 0.7 50 48.1 46.3 20-21.6 20 20.8 21.6 0.734
640 0.25 0.45 50.5 48.2 46.1 19.8-21.7 19.8 20.75 21.7 0.771

YOLOv8l

320 0.5 0.45 55.6 52.6 50 18-20 18 19 20 0.715
320 0.25 0.7 55.6 54.1 52.6 18-19 18 18.5 19 0.774
320 0.5 0.7 54.1 49.4 45.5 18.5-22 18.5 20.25 22 0.716
320 0.25 0.45 57.1 54.1 51.3 17.5-19.5 17.5 18.5 19.5 0.772
480 0.5 0.45 50 44.9 40.8 20-24.5 20 22.25 24.5 0.769
480 0.25 0.7 50 46.4 43.3 20-23.1 20 21.55 23.1 0.794

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 28

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

480 0.5 0.7 48.3 46.4 44.6 20.7-22.4 20.7 21.55 22.4 0.772
480 0.25 0.45 48.8 44.7 41.3 20.5-24.2 20.5 22.35 24.2 0.792
640 0.5 0.45 35.5 34.6 33.8 28.2-29.6 28.2 28.9 29.6 0.762
640 0.25 0.7 36.4 35 33.7 27.5-29.7 27.5 28.6 29.7 0.796
640 0.5 0.7 35.6 35 34.4 28.1-29.1 28.1 28.6 29.1 0.767
640 0.25 0.45 36.2 35.5 34.8 27.6-28.7 27.6 28.15 28.7 0.792

Table 5: YOLO modules performance accelerated by an NVIDIA GeForce RTX 3050 GPU

The performance of both YOLOv7 and YOLOv8 on a modern laptop GPU is outstanding.
Running on the NVIDIA GeForce RTX 3050 GPU has produced results that are all above 30
fps, accommodating even the largest YOLO model can offer.

Generally, the values follow a similar trend, increasing the model weights and image size will
produce more accurate detection results and a lower frame rate to compensate. The variety of
mAP values is the result of different confidence and IoU threshold settings.

The confidence threshold determines the minimum confidence score required for a predicted
bounding box to be considered valid. Lowering the confidence threshold can result in more
bounding boxes being detected, including those with lower confidence scores. This can increase
the number of True Positives but may also introduce more False Positives. As a result, it can
impact both precision and recall, which are crucial components of mAP calculation.

The same can be said about the IoU threshold. Increasing the IoU threshold can make detections
stricter by requiring a higher degree of overlap. This can lead to fewer True Positives being
detected but also fewer False Positives.

Finally, the following table contains the performance comparison running on the Jetson Nano.

4.2.3 Jetson Nano test

Configurations fps Inference Time (ms) mAP
YOLO images size (px) confidence IoU Min Mean Max Range Min Mean Max mAP

YOLOv7-
tiny

320 0.5 0.45 21.9 21.8 21.7 45.6-46 45.6 45.8 46 0.352
320 0.25 0.75 21.7 21.7 21.7 46-46 46 46 46 0.356
320 0.5 0.75 21.7 21.7 21.7 46-46 46 46 46 0.354
320 0.25 0.45 21.7 21.4 21 46-47.6 46 46.8 47.6 0.355
480 0.5 0.45 13.2 13.2 13.2 76-76 76 76 76 0.364
480 0.25 0.75 12.7 12.7 12.7 79-79 79 79 79 0.366
480 0.5 0.75 13.2 13.2 13.2 76-76 76 76 76 0.364
480 0.25 0.45 12.7 12.5 12.3 79-81 79 80 81 0.365
640 0.5 0.45 8.9 8.9 8.8 112-113 112 112.5 113 0.368
640 0.25 0.75 8.8 8.8 8.8 113-114 113 113.5 114 0.367
640 0.5 0.75 8.8 8.8 8.7 113-115 113 114 115 0.370
640 0.25 0.45 9 8.9 8.8 111-114 111 112.5 114 0.368
320 0.5 0.45 5 5 5 199-200 199 199.5 200 0.485
320 0.25 0.75 4.9 4.9 4.9 203-204 203 203.5 204 0.484

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 29

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

YOLOv7

320 0.5 0.75 5 4.9 4.9 202-205 202 203.5 205 0.487
320 0.25 0.45 5.3 5.1 5 190-200 190 195 200 0.486
480 0.5 0.45 2.9 2.9 2.9 347-348 347 347.5 348 0.496
480 0.25 0.75 2.9 2.9 2.9 346-347 346 346.5 347 0.497
480 0.5 0.75 2.9 2.9 2.9 346-347 346 346.5 347 0.499
480 0.25 0.45 2.9 2.9 2.9 346-347 346 346.5 347 0.497
640 0.5 0.45 1.9 1.9 1.9 537-540 537 538.5 540 0.511
640 0.25 0.75 1.9 1.9 1.9 538-539 538 538.5 539 0.510
640 0.5 0.75 1.9 1.9 1.9 538-540 538 539 540 0.512
640 0.25 0.45 1.9 1.9 1.9 537-538 537 537.5 538 0.511
320 0.5 0.45 2.9 2.9 2.9 343-350 343 346.5 350 0.540

YOLOv7-
e6

320 0.25 0.75 2.9 2.9 2.8 344-351 344 347.5 351 0.538
320 0.5 0.75 3.1 3 2.8 320-356 320 338 356 0.541
320 0.25 0.45 2.9 2.9 2.8 342-358 342 350 358 0.540
448 0.5 0.45 1.8 1.8 1.7 560-573 560 566.5 573 0.553
448 0.25 0.75 1.8 1.8 1.8 543-560 543 551.5 560 0.552
448 0.5 0.75 1.8 1.8 1.7 554-572 554 563 572 0.555
448 0.25 0.45 1.8 1.8 1.8 559-567 559 563 567 0.554
640 0.5 0.45 1 0.7 0.5 1050-2006 1050 1528 2006 0.558
640 0.25 0.75 0.9 0.7 0.5 1082-1938 1082 1510 1938 0.557
640 0.5 0.75 0.9 0.7 0.5 1176-1820 1176 1498 1820 0.559
640 0.25 0.45 0.7 0.6 0.5 1469-1907 1469 1688 1907 0.559

YOLOv8n

320 0.5 0.45 23.8 23.5 23.3 42-43 42 42.5 43 0.486
320 0.25 0.7 23.8 23.5 23.3 42-43 42 42.5 43 0.527
320 0.5 0.7 23.8 23.5 23.3 42-43 42 42.5 43 0.486
320 0.25 0.45 24.4 23.5 22.7 41-44 41 42.5 44 0.536
480 0.5 0.45 11.5 11.4 11.4 87-88 87 87.5 88 0.555
480 0.25 0.7 11.5 11.4 11.2 87-89 87 88 89 0.632
480 0.5 0.7 11.8 11.6 11.5 85-87 85 86 87 0.555
480 0.25 0.45 11.8 11.6 11.5 85-87 85 86 87 0.639
640 0.5 0.45 7.4 7.3 7.2 136-139 136 137.5 139 0.564
640 0.25 0.7 7.4 7.4 7.3 135-137 135 136 137 0.615
640 0.5 0.7 7.4 7.3 7.2 135-139 135 137 139 0.560
640 0.25 0.45 7.4 7.3 7.2 136-138 136 137 138 0.626

YOLOv8m

320 0.5 0.45 11.8 11.4 11.1 85-90 85 87.5 90 0.686
320 0.25 0.7 11.9 11.6 11.2 84-89 84 86.5 89 0.727
320 0.5 0.7 11.9 11.3 10.8 84-93 84 88.5 93 0.686
320 0.25 0.45 11.6 11.4 11.2 86-89 86 87.5 89 0.729
480 0.5 0.45 7.2 7.2 7.1 138-141 138 139.5 141 0.735
480 0.25 0.7 7.3 7.2 7 137-142 137 139.5 142 0.768
480 0.5 0.7 7.4 7.3 7.2 136-139 136 137.5 139 0.740
480 0.25 0.45 7.2 7.2 7.1 138-140 138 139 140 0.765
640 0.5 0.45 2.8 2.7 2.6 362-385 362 373.5 385 0.733
640 0.25 0.7 2.9 2.8 2.8 349-361 349 355 361 0.770
640 0.5 0.7 2.8 2.8 2.7 351-372 351 361.5 372 0.734
640 0.25 0.45 2.9 2.8 2.8 348-358 348 353 358 0.771
320 0.5 0.45 7.4 7.2 7.1 135-141 135 138 141 0.715
320 0.25 0.7 7.5 7.2 7 134-143 134 138.5 143 0.774
320 0.5 0.7 7.8 7.4 7.1 129-140 129 134.5 140 0.716

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 30

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

YOLOv8l

320 0.25 0.45 7.6 7.2 6.9 131-145 131 138 145 0.772
480 0.5 0.45 2.8 2.7 2.6 357-379 357 368 379 0.769
480 0.25 0.7 2.7 2.7 2.6 368-380 368 374 380 0.794
480 0.5 0.7 2.7 2.7 2.6 370-381 370 375.5 381 0.772
480 0.25 0.45 2.6 2.6 2.6 378-386 378 382 386 0.792
640 0.5 0.45 1.7 1.7 1.6 587-608 587 597.5 608 0.762
640 0.25 0.7 1.7 1.7 1.7 579-596 579 587.5 596 0.796
640 0.5 0.7 1.7 1.7 1.7 574-585 574 579.5 585 0.767
640 0.25 0.45 1.8 1.7 1.7 569-587 569 578 587 0.792

Table 6: YOLO modules performance on the Jetson Nano

The performance of the Jetson Nano aligns closely with expectations in the context of its role
as an edge computing device. Among the various models in the Jetson lineup, the Nano, being
the smallest, offers a well-balanced combination of processing power and size. When considering
the different YOLO versions, YOLOv8 emerges as the clear leader, outpacing YOLOv7 in terms
of both frames per second (fps) and mean average precision (mAP). This reinforces the notion
that the latest advancements in the YOLO series contribute to improved detection accuracy and
speed.

However, it’s noteworthy to emphasize that the suitability of certain YOLO module weights
varies based on the application’s real-time requirements. The medium and large weights of the
YOLO modules may not be the most optimal choices for real-time detections on the Jetson
Nano due to the computational demands they place on the hardware. These weights could lead
to reduced performance and potentially compromise the desired real-time detection capability.

In contrast, the performance of YOLO’s tiny weights, utilizing an image size of 320 pixels, aligns
more closely with the Jetson Nano’s capabilities. This configuration offers a closer approximation
to achieving the target of 30 frames per second. The careful consideration of both model version
and weight choice is essential when aiming to strike the right balance between accuracy and
speed on edge devices like the Jetson Nano.

Interestingly, across three tests, despite using different CPUs, the mAP stays consistent across
the board.

4.3 Conclusion

It’s worth noting that while the Jetson Nano offers commendable performance, modern laptop
GPUs have demonstrated superior performance, outperforming the Nano in terms of both frame
rate and accuracy. Additionally, when comparing the Jetson Nano’s performance against CPUs,
the difference in capability is noticeable but not substantial. However, the laptop should not be
placed in the edge device position for the reasons mentioned in previous sections. In conclusion,
the Jetson Nano effectively fulfills its role as an edge computing solution, with YOLOv8 standing
out as the preferred option due to its advanced capabilities.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 31

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

5 YOLOv8 tracking and logging

Having decided on the model to be used for the project, this section contends with the application
of YOLOv8 in a meaningful way.

5.1 Tracking

5.1.1 Overview

Taking the original vision for the project, the system with the assistance of YOLOv8 has to
identify the defective items on a production line. To do so, the item being detected is then
distinguished from other objects. A solution to this problem is to give the objects identification
numbers. This is easier said than done, however, due to the nature of YOLO or object detection
in general. YOLO processes a video feed from a camera frame by frame, detecting every object
in a frame and then notating it for the user to see. The question arose: How can the machine
recognize 2 detections on different frames are the same object?

Figure 8: How to recognize the same object across frames

In the simplest terms possible, the same object should not move too far from its position in the
previous frame. By comparing the position of the box notations between frames, there is an
inevitable overlap of the same object. This could also lead to miss identification as a different
object can move and overlap with another object’s position. Setting an intersection over union
value can help negate these situations.

5.1.2 YOLOv8 built-in tracking function

The choice of YOLOv8 offers the benefit of a built-in tracking application. Ultralytics YOLO
supports the following tracking algorithms: BoT-SORT and ByteTrack. In addition, Ultralytics
allows for the use of a custom tracker by including the YAML file as an argument. However, this
thesis will only focus on the 2 offered trackers for simplicity.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 32

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

(a) YOLOv8 detect (b) YOLOv8 track

Figure 9: YOLOv8 object detection and YOLOv8 object detection with tracking

a) BoT-SORT

BoT-SORT is the latest in a long line of SORT-like (Simple Online and Realtime Tracking)
algorithms. Multi-object tracking (MOT) is the field of detecting and tracking all the objects in
a scene while maintaining a unique identifier for each object. Introduced in mid-2022, BoT-SORT
is a state-of-the-art tracker and a solution for the MOT problem.

An over-simplified SORT tracking algorithm is broken down into these steps: In the first step, for
each frame of a video, an object detection algorithm identifies and localizes objects of interest;
in this case, the source is the YOLOv8 model. Next, the algorithm associates detections from
the current frame with existing tracked objects from the previous frames. This association is
typically based on metrics like the Euclidean distance between detection bounding boxes and
predicted object positions. Tracked objects have a predicted position and velocity based on their
previous states. The SORT algorithm predicts the next position of each tracked object based
on its current state. The primary challenge in multi-object tracking is associating detections
with existing tracks. SORT uses techniques, like in the case of BoT-SORT, Kalman filtering,
to optimally associate detections and tracks based on the similarity of their properties. After
association, tracked object states are updated based on new detections. This includes adjusting
the position, velocity, and other attributes of the tracked objects. SORT also handles the creation
of new tracks for detections that don’t match any existing tracks and manages the termination
of tracks for objects that are no longer detected.

From there, BoT-SORT is introduced with further improvements, including a camera motion
compensation-based features tracker to improve the accuracy of box localization. This tracker
compensates for the camera’s motion to ensure that the features used for tracking are consis-
tent across frames. Using a new method for IoU and ReID’s cosine-distance fusion to improve
the robustness of associations between detections and tracks. This method fuses the IoU and
ReID cosine distance scores to obtain a more reliable association score. Finally, integrates the
limitations of existing SORT-like trackers into the novel ByteTrack to address these limitations
and improve the tracker’s performance. These advancements have led to BoT-SORT outper-
forming other tracking algorithms on the MOT17 and MOT20 challenges, making it a promising
multi-pedestrian tracking algorithm.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 33

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

b) ByteTrack

The other default tracker for YOLOv8 is ByteTrack. Introduced in 2021, it is a milestone in
the MOT algorithms. It also made up a part of BoT-SORT as mentioned before. At the time,
ByteTrack demonstrated superior results over existing trackers while maintaining steady 30 fps
on a single V100 GPU.

The accompanying paper for ByteTrack stated that it achieved state-of-the-art performance on
multiple tracking benchmarks, including MOT17, MOT20, HiEve, and BDD100K. Its results
were only passed by the BoT-SORT a year later.

The proposed method, BYTE, is a simple, effective, and generic association method for multi-
object tracking. It associates almost every detection box instead of only high-score ones to
recover true objects and filter out background detections. The method consists of two modes:
The first mode associates detection boxes with tracklets based on their Re-ID features and motion
information. This mode is used for high-score detection boxes; The second mode associates
detection boxes with tracklets based on their similarity in appearance and motion. This mode
is used for low-score detection boxes.

However, the main draw for ByteTrack is its high accuracy, low inference time, and flexibility
to integrate and improve on other association methods. The results show that it improves the
performance of multi-object tracking, especially for low-score detection boxes. By applying to
existing trackers, they achieve consistent improvements in tracking performance.

5.1.3 Conclusion

While ByteTrack provided many improvements and advantages at the time, with still the land-
mark for other MOT algorithms to follow. BoT-SORT outperforms ByteTrack in every aspect.
This is easy to understand as BoT-SORT took ByteTrack as its base and improved upon its
weaknesses. Under certain circumstances, ByteTrack may prove to be more suitable, but for the
purpose and the original idea of the project, BoT-SORT is chosen to be the tracking algorithm
for YOLOv8.

5.2 Logging

5.2.1 Overview

With the detections of YOLOv8 with tracking established, the data collected will be useless
if it is not logged out or processed. Once YOLOv8 detections with tracking capabilities are
established, harnessing the potential of the collected data becomes paramount. The efficacy of
the detections would be severely compromised if this valuable data is not adequately managed
through proper logging and processing mechanisms. The process of logging and processing
serves as the bridge between real-time detection and actionable insights, ensuring that the entire
endeavor is not merely an exercise in capturing information but a transformative journey toward
informed decision-making. This task is managed by Supervision.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 34

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

5.2.2 Supervision

Figure 10: Supervision counting objects example

Supervision, an impressive assortment of computer vision tools, has emerged as a game-changing
creation from the innovation labs of Roboflow. This meticulously designed Python extension
has been tailored to elevate the capabilities of computer vision projects to new heights, bringing
a wealth of advanced functionalities to the fingertips of developers and researchers alike. With
Supervision, the realm of computer vision is no longer confined to basic tasks; it now offers
a multifaceted toolkit that empowers professionals to achieve more, streamline workflows, and
extract valuable insights from their visual data. However, the application of focus for this project
is counting objects in certain areas and how it is repurposed.

a) How to extract data from YOLOv8

(a) YOLOv8 (b) YOLOv8 + Supervision

Figure 11: Translating data from YOLOv8 to Supervision

To establish a seamless integration between YOLOv8 and Supervision, a crucial step entails the
extraction and translation of data detected by YOLOv8 to a format compatible with the Su-
pervision platform. This step serves as the linchpin for enabling Supervision’s object-counting
functionality to leverage the data extracted from YOLOv8, thereby facilitating precise and in-
sightful calculations.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 35

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

The function at the core of this data translation process is sv.Detections.from_ultralytics(result).
This ingenious function serves as the bridge that connects the outcomes of YOLOv8’s object
detection efforts with the Supervision environment. It plays a pivotal role in transferring key
information such as confidence, class_id, and tracker_id associated with the detected bounding
boxes from YOLOv8’s outputs to Supervision’s data pipeline.

Notably, the function doesn’t stop at merely transferring essential detection attributes; it goes the
extra mile by ensuring that the spatial context of the detected objects is meticulously preserved.
This is accomplished by including the precise coordinates of the bounding boxes in the transferred
data. These coordinates serve as the foundation for the annotation process in Supervision,
allowing for the seamless visualization of detected objects within the Supervision interface.

b) Introducing Supervision counting line

Figure 12: Applying counting line to the project

Once the data stream from YOLOv8 has been harnessed, the process of integrating counting
lines into projects within the Supervision framework is remarkably straightforward. This entails
a user-friendly procedure that efficiently augments the data analysis capabilities. By designating
two pivotal points, Point A and Point B, Supervision promptly crafts a LineZone that effectively
links these two coordinates. This strategic maneuver orchestrates the establishment of a virtual
line of demarcation, ready to interact with the detected objects.

However, it’s important to note that the implementation of this LineZone extends beyond a mere
visual representation. While Point A and Point B provide the foundational context for the line’s
placement, the bar itself effectively extends beyond these designated coordinates, spanning across
the entirety of the frame. This robust approach ensures that no subtlety of object interaction
goes unnoticed, even when objects engage with the line in ways that transcend the initial two
points.

The synergy between the bounding boxes derived from YOLOv8 detections and the newly minted
counting line is a multi-dimensional engagement that unfolds in distinct phases. Firstly, there are
new detections that materialize as objects make their appearance. These objects, once detected

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 36

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

on one side of the line, initiate their journey through the data zone.

Secondly, the line interacts with objects that are mid-transit, caught in the throes of traversing
the visual field. This dynamic interaction is captured as the boxes, indicative of the detected
objects, occupy a middle-ground state within the line zone.

Lastly, the objects that have successfully crossed the line and moved to the other side are met with
precision tracking. This milestone is tactfully leveraged by Supervision’s in and out counters,
which meticulously tally the objects based on their directional movement about the line.

Nevertheless, there exist certain scenarios where the initiation of the counter fails to transpire
seamlessly. These instances are pivotal in highlighting the intricacies of the Supervision-YOLOv8
synergy. One such occurrence arises when detections or boxes first manifest themselves directly
on the line. This predicament ushers in a confounding challenge, as the program grapples with
the dilemma of assigning these objects to a specific side of the line for counting.

In a similar vein, a second scenario emerges when YOLOv8 temporarily loses its grasp on object
tracking during the critical juncture of crossing the line. This predicament materializes when
an object is traversing the line and YOLOv8 momentarily loses its ability to sustain accurate
tracking. This transient disconnect between the tracking mechanism and the object’s movement
across the line disrupts the counting process, leading to discrepancies in the final count.

c) The nature of LineZone’s points

Integrating logging functionality through the utilization of the LineZone entails a strategic ap-
proach that involves overriding key functions. This method allows for a seamless fusion between
the Supervision platform and the distinctive attributes of the LineZone. To embark on this
endeavor, it is imperative to delve into the fundamental characteristics of the points employed to
delineate the LineZone. These points serve a dual purpose: not only do they facilitate the fine-
tuning of the optimal angle for object passage, but they also establish a categorical distinction
between the two sides of the line.

To clarify this distinction, let’s explore the concept through a simple visual analogy depicted in
Figure 13. Imagine your left hand positioned horizontally, with your thumb pointing towards
your body. In this setup, we will be using your hand as a model for the LineZone, where point
A corresponds to your wrist, and point B corresponds to the tip of your finger.

In this hand analogy, the LineZone operates as follows: As objects traverse through the line,
their movement direction determines whether the in or out counter is affected. If an object
moves through by approaching from the back of the hand, it will increment the out counter.
Conversely, if an object moves towards the palm of your hand, it will increment the in counter.

Now, let’s consider the scenario when you move your hand while maintaining the same thumb
orientation facing your body. Despite the movement, points A and B still correspond to the
wrist and the tip of the fingers, respectively. However, due to the hand’s relocation, the sides of
the line also shift accordingly.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 37

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Figure 13: Visualization of how points in LineZone work

Crucially, what doesn’t change is the relationship between the object’s movement and the coun-
ters. Irrespective of the hand’s position, an object moving towards the palm will consistently
increase the in counter, while an object moving towards the back of the hand will consistently
boost the out counter.

d) Overriding the LineZone trigger function

The function responsible for counting objects crossing the LineZone is the trigger function.
This function efficiently manages the various states an object assumes within the context of
the LineZone, as elaborated in the preceding sections. The motivation behind overriding this
function lies in the desire to introduce additional steps for gathering information based on the
specific states an object undergoes.

As elucidated in the section titled The Nature of LineZone’s Points, the side of the line can
be predetermined by manipulating the two input points that define the LineZone. This insight
provides the groundwork for bifurcating the trigger function into two distinct functions: trigger1
and trigger2. Each of these functions serves a unique purpose, catering to the different behavior
of objects concerning the in and out counters, respectively.

To delve deeper into the specifics, let’s consider the trigger1 function. This function addresses
the border that an object must cross to enter a zone. So the sole purpose of this function is the
initialize the time_in (the time when the object first entered the area).

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 38

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Listing 1: LineZone trigger1 for objects to enter

de f t r i g g e r 1 (s e l f , d e t e c t i on s : Detec t i ons) :
f o r xyxy , _, conf idence , c lass_id , t racker_id in d e t e c t i on s :

unchanged code
. . .

i f t racke r_sta te :
s e l f . in_count += 1

e l s e :
s e l f . out_count += 1
i f t racker_id in my_dict :

my_dict . get (t racker_id) . set_time_in (time . time ())

On the other hand, the trigger2 function handles instances where objects move towards the
side of the line that increases the in counter. In this context, modifications to the handle of
new detections are changed to also initialize classes for logging the information. Specifically, it
initializes the object tracker_id, the starting class_id, and assigns a UUID.

Handling of detection on the same side of trigger2 is also subject to change to include a fail-
safe. As long as the object remains on the same side, the confidence corresponds to the class_id
are added to determine the definitive class_id of an object. This continues till finally, when the
object crosses the line from the increment in side, the time_out (the time when the object leaves
the zone) and the final result for class_id are logged and all the information is gathered.

Listing 2: LineZone trigger2 for objects to exit

de f t r i g g e r 2 (s e l f , d e t e c t i on s : Detec t i ons) :
f o r xyxy , _, conf idence , c lass_id , t racker_id in d e t e c t i on s :

unchanged code
. . .

handle new de t e c t i on
i f t racker_id not in s e l f . t racke r_sta te :

s e l f . t r acke r_sta te [t racker_id] = tracke r_sta te
my_dict [t racker_id] = c o l l e c t I n f o (tracker_id)
cont inue

handle de t e c t i on on the same s i d e o f the l i n e
i f s e l f . t racke r_sta te . get (t racker_id) == tracke r_sta te :

i f t racker_id in my_dict :
my_dict [t racker_id] . conf i rm_class_id (c lass_id , con f idence)

cont inue

unchanged code
. . .

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 39

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

i f t r acke r_sta te :
s e l f . in_count += 1
my_dict . get (t racker_id) . set_time_out (time . time ())
my_dict . get (t racker_id) . se t_c lass_id ()
my_dict . get (t racker_id) . post_info ()
de l my_dict [t racker_id]

e l s e :
s e l f . out_count += 1

5.2.3 Conclusion

By introducing the new trigger functions, the zone configuration is now encompassed by four
distinct lines. This arrangement involves two lines dedicated to managing detections that are
entering the designated area, and another two lines are assigned to oversee detections as they
exit the same area. This symmetrical layout ensures that the movement of objects through the
zone is accurately tracked and accounted for, both during their entry and exit phases.

Fine-tuning these four lines becomes crucial to optimizing the system’s response to objects ap-
proaching or receding from the camera’s POV. This adjustment accounts for scenarios where
objects are either entering the frame for the first time or are positioned too distantly to be
promptly detected. Given the constraints of the Jetson Nano’s processing capabilities for near
real-time detection, accurately identifying objects at the initial moments they appear within the
frame, or when they are positioned at a significant distance, can be challenging. So the instance
of tracking traffic on a highway, vehicles moving toward the camera need their lines pushed closer
to the front. The opposite is true for traffic moving away from the camera as the lines tracking
them need to be pushed back.

Figure 14: The modified trigger function implemented

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 40

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

6 Internet of Things of AIoT

This section discusses the IoT part of an AIoT system. This includes an overview of IoT’s current
climate and the project’s IoT choices.

6.1 Overview

The Internet of Things has evolved into a transformative technology landscape, connecting de-
vices, sensors, and systems to the Internet, enabling them to collect, exchange, and analyze
data for various applications. The proliferation of IoT devices has brought about significant ad-
vancements across industries, revolutionizing sectors like healthcare, transportation, agriculture,
smart cities, and more.

In the current IoT landscape, devices are embedded with sensors, processors, and communication
capabilities, allowing them to communicate with each other and with central platforms or servers.
This connectivity enables the real-time monitoring and control of remote devices and assets,
leading to improved efficiency, data-driven insights, and enhanced decision-making.

6.2 IoT platform choices

For this project, there 2 main IoT platforms that are available for experiments and productions

6.2.1 Things Platform

Figure 15: ThingsBoard Cloud Platform

The rapid growth of the IoT has led to the development of advanced platforms that facilitate
the management, monitoring, and analysis of connected devices and their data. One such no-
table platform is Thingsboard Cloud, an innovative IoT solution that empowers organizations to
harness the potential of their IoT ecosystems. With a range of features and capabilities, Things-
board Cloud offers a comprehensive suite of tools to seamlessly connect, manage, and extract
insights from IoT devices.

Thingsboard Cloud serves as a robust and scalable IoT platform that caters to the diverse needs
of industries ranging from manufacturing and agriculture to healthcare and smart cities. It
provides a unified dashboard that enables users to visualize real-time data, track device status,

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 41

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

and analyze historical trends. This centralized view enhances operational efficiency and informed
decision-making by providing a holistic understanding of the connected devices’ performance.

Moreover, Thingsboard Cloud emphasizes security and data privacy. It offers robust authen-
tication mechanisms and end-to-end encryption to safeguard sensitive data from unauthorized
access. Additionally, the platform provides user access control, ensuring that only authorized
personnel can view, manage, and manipulate IoT devices and their data.

Another advantage of Thingsboard Cloud is its analytics capabilities. The platform allows users
to perform advanced data analysis, generate reports, and gain actionable insights from the col-
lected IoT data. This empowers businesses to optimize processes, improve efficiency, and uncover
hidden patterns that might not be immediately apparent.

Thingsboard represents more than just an IoT platform; it embodies the spirit of collaboration
and innovation that open-source projects are known for. Built on a foundation of transparent
development and community engagement, Thingsboard’s open-source nature empowers develop-
ers, researchers, and enterprises to craft tailored IoT solutions that suit their specific needs. By
providing access to its source code, the platform invites contributions from a diverse range of
minds, fostering an environment of continuous improvement and customization.

An excellent demonstration of Thingsboard’s open-source ethos can be witnessed through a
notable instantiation called Things.vn. Notably, Things.vn caters specifically to the vibrant
community of Vietnamese developers, accentuating the platform’s commitment to localized and
region-specific IoT solutions.

Figure 16: Things.vn Cloud Platform

Being an implementation of Thingsboard, Things.vn offers the same range of applications and a
variety of tools to monitor, visualize, and analyze data as an IoT platform. With a wide range
of industry-standard IoT communication protocols, such as MQTT(s), HTTP(s), and CoAP.

In addition, the Things.vn platform also provides services to set up smart applications based on
consumer requests, from smart factories and workplaces to monitoring air quality and storage.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 42

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Figure 17: Things.vn Cloud Landing Page

6.2.2 InfluxDB

Figure 18: InfluxDB Platform

In the realm of the IoT, the effective management and analysis of time-series data is crucial.
One prominent player in this field is InfluxDB, a powerful and open-source time-series database
designed to handle the unique challenges posed by IoT data streams. InfluxDB has rapidly
gained popularity as a solution for storing, querying, and visualizing time-stamped data, making
it an essential tool for businesses seeking to harness the value of their IoT ecosystems.

At its core, InfluxDB excels in managing data points that are timestamped and associated
with specific measurements. This aligns perfectly with the nature of IoT data, where sensors
and devices generate continuous streams of time-sensitive information. InfluxDB’s architecture
allows for efficient storage and retrieval of this data, enabling users to manage massive amounts
of information generated by countless IoT devices.

One of the key strengths of InfluxDB is its optimized querying capabilities for time-series data.
The platform offers a query language, InfluxQL, designed to efficiently handle time-based data
queries. This means that users can easily perform tasks such as filtering data within specific
time intervals, aggregating data over time, and performing calculations on temporal data. Such
capabilities are essential for extracting valuable insights from IoT data streams.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 43

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Figure 19: InfluxDB Platform Landing Page

InfluxDB also boasts a rich ecosystem of tools and integrations that enhance its usability.
Grafana, for example, is a popular visualization platform that can be seamlessly integrated
with InfluxDB to create visually appealing and informative dashboards. This integration em-
powers users to gain real-time insights into their IoT data, enabling them to monitor device
status, detect anomalies, and make data-driven decisions.

Security is a top priority for any IoT system, and InfluxDB addresses this concern through
features such as authentication, authorization, and encryption. This ensures that data remains
protected throughout its lifecycle, from ingestion to analysis.

6.3 Conclusion

In the end, both platforms provide unique attributes that do not make one inherently better than
the other. Things.vn excels as an end-to-end IoT platform, offering device management, data
processing, visualization, and rule-based automation. InfluxDB specializes in efficiently storing
and retrieving time-series data, making it a powerful backend choice for applications heavily
reliant on historical data tracking and analysis. During this project, these two IoT platforms are
both used interchangeably, with the usage of specific platform will be mentioned if necessary.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 44

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

7 Miscellaneous tools and accessorries

In this section, the auxiliary tools and applications required for the system to function efficiently
are discussed. These tools do not form the primary core of the project. Some temporary solutions
discussed here were replaced by alternative solutions, which we will also address in this section.

7.1 Fluentd

Figure 20: An open source data collector - Fluentd

Fluentd is an open-source data collection tool designed to simplify and streamline the process of
collecting, processing, and forwarding log data from various sources in a computing environment.
It acts as a middleware, facilitating the integration and transportation of data between different
applications and systems, which is particularly crucial in complex and distributed architectures.

The primary purpose of Fluentd is to address the challenges associated with log data management
in modern IT environments. As systems and applications become more distributed and diverse,
generating a significant volume of log data, the need for a centralized mechanism to collect and
analyze this data efficiently has grown. Fluentd was developed to fill this gap by providing
a unified platform to manage logs from a wide range of sources, such as servers, applications,
databases, and external services.

Fluentd follows a "log forwarding" architecture, where it acts as a data collector that gathers
logs from various sources and processes them before forwarding them to destinations such as
databases, storage systems, or analytics platforms. Its flexibility lies in its ability to accommodate
data in various formats and protocols, including JSON, CSV, and Apache logs, among others.
This versatility allows Fluentd to work seamlessly in heterogeneous environments with diverse
logging practices.

One of the significant advantages of Fluentd is its extensive ecosystem of plugins. These plugins
enable seamless integration with various data sources, destinations, and processing tools, allowing
users to tailor Fluentd to their specific needs. This extensibility has contributed to Fluentd’s
popularity in both small-scale setups and large, complex architectures.

In this project, Fluentd plays a crucial role in monitoring changes to logging files and transmit-

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 45

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

ting the collected data to the designated IoT database. Leveraging Fluentd’s versatile plugins,
and establishing a connection with InfluxDB becomes a straightforward process. In parallel,
Things.vn utilizes an HTTP connection to relay telemetry data. Adjustments are made solely
in the configuration file to instruct Fluentd to monitor the specific file, ensuring data integrity
through backup mechanisms to prevent information loss or duplication.

Listing 3: Fluentd Configuration

<source>
@type t a i l
format j son
read_from_head true
tag f i l e −myapp . l og
path . / f i l e / i n f o . l og
po s_ f i l e . / tmp/ i n f o . l og . pos

</source>

<match f i l e −myapp . log>
Conf igurat ion f o r InfluxDB
@type in f luxdb2
u r l http : / / . . .
org . . .
token . . .
bucket . . .
use_ss l f a l s e

Conf igurat ion f o r Things . vn
@type HTTP

endpoint http :// c loud . th ing s . vn/ api /v1 / . . . / t e l emetry
open_timeout 2

<format>
@type j son

</format>

Conf igurat ion f o r both
<buf f e r >

f l u sh_ in t e r va l 1 s
</bu f f e r >

</match>

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 46

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

7.2 ImageZMQ

ImageZMQ is a powerful and efficient communication library that simplifies the process of sending
and receiving images between different devices and applications. Built on top of ZeroMQ, a high-
performance messaging library, ImageZMQ specializes in the seamless transmission of images,
making it an invaluable tool in various fields such as computer vision, machine learning, and IoT
applications.

The core functionality of ImageZMQ revolves around the concept of image serialization and
communication. It enables devices and processes to transmit images, frames, or arrays over
a network with minimal latency and efficient data serialization. This is particularly useful in
scenarios where real-time image data needs to be shared between different components of a
system.

Originally developed to receive surveillance footage from Raspberry Pi cameras. During the
early stages of the project, it was used to stream footage processed from the Jetson Nano to a
streaming server to broadcast the video back to the users. By utilizing ZeroMQ’s high-speed
messaging patterns, ImageZMQ ensures that images can be transmitted quickly and reliably,
even in resource-constrained environments.

However, ImageZMQ is proven to be only a temporary solution as it is not sufficient to handle
multiple image channels because of its single IP address binding. As the project expanded, the
feature of allowing the user to choose the mode of watching the stream playback was introduced,
and ImageZMQ was proven obsolete.

7.3 Streamlit

Figure 21: A faster way to build and share data apps - Streamlit

To stream content to users, there needs to be a user interface through which they can view the
footage. This is where Streamlit comes in handy. Streamlit, an open-source Python library,
has emerged as a transformative tool for data scientists and developers seeking to convert data
scripts into interactive web applications with remarkable ease. Its primary goal is to simplify
the process of transforming data visualizations, machine learning models, and other data-centric
scripts into shareable, responsive, and interactive web apps, all while minimizing the need for
intricate web development expertise.

At the heart of Streamlit’s appeal is its remarkable simplicity. By adopting a user-friendly syntax,
the library empowers users to effortlessly incorporate interactive elements into their applications.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 47

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

With a single line of code, interactive components such as sliders, buttons, and text inputs can
be seamlessly integrated, resulting in a streamlined development experience.

While its simplicity is a hallmark, Streamlit also offers robust customization options. Users
can fine-tune the appearance and behavior of their web apps by adjusting layouts, themes, and
styles. This balance between ease of use and customization empowers developers to tailor their
applications to meet specific requirements without compromising efficiency.

Despite its numerous advantages, it is important to acknowledge that Streamlit, like any technol-
ogy, is not without its challenges. One notable issue that has gained attention is its susceptibility
to memory leaks in certain scenarios. While Streamlit excels in transforming data scripts into
interactive web applications, it has been observed that under specific conditions, memory usage
may steadily increase over time, ultimately leading to performance degradation and potential
crashes. This phenomenon, known as memory leak, can be particularly concerning, especially in
applications where stability and reliability are paramount.

Furthermore, Streamlit’s compatibility with streaming large volumes of data, such as real-time
video footage from devices like the Jetson Nano to a streaming server, has also raised concerns.
The process of streaming data between devices demands efficient memory management and
optimized network communication. However, in certain configurations, users had challenges in
smoothly streaming data, with performance bottlenecks and interruptions impacting the overall
user experience.

This led to both ImageZMQ and Streamlit being ruled out as potential tools for the final products.

7.4 MQTT

MQTT (Message Queuing Telemetry Transport) has emerged as a critical protocol in the realm
of IoT and data communication. Designed for lightweight and efficient messaging, MQTT facili-
tates communication between devices and systems with minimal overhead, making it particularly
suited for resource-constrained environments. The protocol’s publish-subscribe architecture en-
ables devices to exchange messages through a centralized broker, enhancing the scalability and
flexibility of IoT applications.

One of the most widely used implementations of MQTT is the Mosquitto broker. Mosquitto
provides an open-source and lightweight solution for setting up MQTT brokers, acting as a
central hub that mediates the flow of messages between publishers and subscribers. The broker’s
efficient design and low memory footprint make it an ideal choice for diverse IoT scenarios, from
home automation to industrial applications.

Mosquitto’s configuration options allow users to tailor the broker to their specific requirements,
such as authentication mechanisms, data retention policies, and access controls. This configura-
bility not only ensures security but also enhances the efficiency of message routing and delivery.
Moreover, Mosquitto supports various Quality of Service levels, providing users the flexibility to
choose the desired level of message reliability and delivery guarantee.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 48

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

MQTT and Mosquitto were introduced to solve an emerging problem during the project devel-
opment: The Jetson Nano can stream (communicate) to the streaming server and by extension,
the users, but the users can not communicate with the Jetson Nano to change its settings and
output. The solution was to combine MQTT producers with the Streamlit interface to send
messages that the Jetson Nano can receive and change its configurations accordingly. However,
as the project grows intending to create an ecosystem for multiple users and Jetson Nano, which
can communicate with each other, the MQTT solution was replaced by Apache Kafka, a dis-
tributed streaming platform that focuses on high-throughput, fault-tolerant, and scalable data
streaming.

7.5 Apache Kafka

Figure 22: An open-source distributed event streaming platform - Apache Kafka

The landscape of data processing and streaming has witnessed a transformative shift with the
emergence of Apache Kafka. As a distributed streaming platform, Kafka stands as a testament
to the ever-growing demand for efficient real-time data pipelines and streaming applications.
Born out of the innovation of LinkedIn and subsequently open-sourced by the Apache Software
Foundation, Kafka has established itself as a cornerstone of modern data engineering ecosystems.

At its core, Kafka presents a revolutionary approach through its conceptualization of a distributed
commit log. This approach revolutionizes traditional messaging systems by orchestrating a robust
architecture capable of managing vast volumes of data streams while upholding exceptional
throughput and fault tolerance. The driving force of Kafka’s architecture is the Kafka broker, a
versatile entity that seamlessly transitions between a message broker, a data storage system, and
a dynamic data streaming platform. This pivotal piece forms the bedrock upon which Kafka’s
intricate ecosystem thrives.

Central to Kafka’s ecosystem are the notions of topics and partitions. Topics act as conduits for
data organization, carving logical channels through which data streams flow. Producers, in turn,
are the architects of this flow, composing data records into Kafka topics. On the other end of
the spectrum, consumers assume the role of data recipients, subscribing to topics and extracting
value from the data records they hold.

Underpinning this structure is Kafka’s innovative use of partitions. By dividing topics into
partitions, Kafka optimizes data distribution and parallel processing. This segmentation equips

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 49

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Kafka with the prowess to scale horizontally and efficiently manage voluminous data streams
across a dynamic network of brokers.

Operationalizing Kafka necessitates a coherent orchestration of its key components. Produc-
ers harness the power of Kafka by infusing data records into specific topics, while consumers
immerse themselves in the rich data stream by subscribing to these topics. Within this ecosys-
tem, consumer groups emerge, embodying the collaborative nature of data processing. Kafka’s
partition-based consumption model ensures that each partition is processed by a single consumer
within a group, thus harmonizing the load distribution and processing efficiency.

In practice, the journey of data within Kafka unfolds as a symphony of publishing, storage, par-
titioning, replication, and consumption. Data records are meticulously published by producers,
encapsulating the essence of events within the digital realm. These records are subsequently
etched into the storage of Kafka brokers, manifesting as messages within a commit log. This
transformative storage approach fosters both scalability and durability, hallmarking Kafka’s com-
mitment to efficient and reliable data processing.

The tale of Kafka is one of evolution, as it not only complements but in this scenario sup-
plants traditional protocols such as MQTT. While MQTT aptly serves lightweight communica-
tion needs, Kafka excels in data-intensive environments that necessitate intricate data processing
and event-driven architectures. Kafka’s dominance in scenarios requiring immense data volumes
and complex data transformations is attributed to its robust publish-subscribe model, parallel
processing capabilities, fault tolerance through data replication, and scalability through horizon-
tal expansion.

Kafka worked so well as a lightweight distributed event-streaming platform that eventually, it
was also implemented into the streaming architecture.

7.6 Video transmitting and streaming

The updated version of the project proposes implementing streaming to improve the automation
of an AIoT system while enabling remote surveillance.

7.6.1 Overview

In earlier iterations, Streamlit played a pivotal role as the platform that facilitated real-time
visualization of the AIoT process. Concurrently, ImageZMQ served as the application responsible
for delivering frames, effectively serving as a conduit between ImageZMQ and Streamlit. This
seamless synergy allowed Streamlit to efficiently broadcast the received frames to end users,
enabling them to observe the AIoT operations as they transpired in real time.

Nevertheless, as elucidated in the preceding sections, the array of issues and drawbacks associated
with these applications has reached a magnitude that renders the current system obsolete and
impractical.

The replacement for the existing system entails a novel streaming approach inspired by prominent

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 50

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

platforms like YouTube and Twitch. To further enhance this setup, a Content Delivery Network
(CDN) is integrated to proficiently regulate the distribution of content to users.

7.6.2 Theory and Testing

a) Video Streaming Basics

In the rapidly evolving landscape of AIoT, the traditional approach to video streaming has under-
gone a significant transformation, propelled by the principles observed in industry giants. This
novel strategy revolves around a more sophisticated understanding of video streaming fundamen-
tals, aimed at overcoming the limitations of the previous system and delivering an unparalleled
user experience.

The foundation of modern video streaming rests upon the efficient collection and segmentation
of video frames. This process takes inspiration from the best practices of platforms like YouTube
and Twitch. Video frames, extracted from sources like cameras or edge devices’ processing results,
form the raw material for streaming content. Large quantities of seemingly insignificant frames
can overwhelm. Video streaming inefficiency results from sending a constant large amount of
data per second for a stable 30 frames per second video feed. This is where chunk compression
comes into play. These frames are meticulously compressed into smaller, manageable segments
known as chunks. This segmentation isn’t merely an organizational tactic; it plays a pivotal role
in ensuring smooth and adaptive video playback on various user devices.

b) Video Compression: .h264 and .h265

In the realm of video streaming, the art of compression is an essential factor that shapes the
balance between data size and visual quality. Two prominent compression formats, .h264 (Ad-
vanced Video Coding) and .h265 (High-Efficiency Video Coding) have emerged as pivotal players
in this dynamic landscape. Let’s delve deeper into these formats, their characteristics, and the
factors that influence their choice in modern video streaming architectures.

.h264, also known as AVC (Advanced Video Coding), has been a steadfast and reliable codec
in the video compression domain. It holds a strong presence owing to its compatibility across a
broad range of devices and its relatively efficient compression capabilities. .h264 achieves com-
pression by utilizing predictive coding, wherein it encodes video frames by referencing previous
and subsequent frames, identifying redundancies, and only transmitting the differences (motion
vectors) between them. While it effectively reduces data size, .h264 strikes a balance between
compression and quality, making it a suitable choice for applications where real-time streaming
and moderate visual quality are desired.

As the demand for higher-quality content and more efficient compression has grown, .h265,
also known as HEVC (High-Efficiency Video Coding), emerged as a game-changer. The key
highlight of .h265 lies in its ability to deliver superior compression efficiency while preserving
visual quality. This efficiency is achieved through advanced techniques such as larger block sizes,

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 51

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

enhanced motion vector prediction, and improved intra-frame prediction. By capturing more
details and optimizing the encoding process, .h265 reduces data size significantly compared to
its predecessor. However, it’s important to note that the computational complexity required
for encoding and decoding .h265 is higher than that of .h264, which can impact the hardware
requirements for real-time streaming applications.

c) Optimizing Video Compression: An In-Depth Experiment

In the quest for optimizing video compression, a meticulous experiment has been designed to
explore the most efficient compression type under varying frame sizes. Furthermore, the experi-
ment incorporates an investigation into the impact of the chunk length, defined by the number
of frames compressed within each segment. The objective of this test is to shed light on the
optimal compression strategy, providing insights that can significantly influence video streaming
systems’ performance.

The size of a video frame profoundly influences its storage requirements, transmission bandwidth,
and overall data volume associated with the image or video. To capture this effect, a range of
frame sizes has been selected. For each frame size, a set of frames is established and consistently
employed across all tests. This ensures that the impact of sizes on compression can be accurately
measured. Afterward, to quantify the data requirements for each frame size, the experiment
computes the Mean Size of Frames within each dimension category. This metric provides a clear
understanding of the average data volume associated with different frame sizes. As mentioned,
.h264 and .h265 are two Compression Formats being evaluated in the experiment. Both formats
are widely used in video compression, but their performance characteristics can differ significantly.
Comparing these formats under different conditions allows for an informed choice of the most
suitable codec for specific applications.

After compressing frames into chunks using the defined settings, the experiment captures the
range of resulting Video Sizes. This data is essential for assessing the overall size of compressed
videos for each combination of variables. The mean Video Size for each chunk configuration
is calculated. To gain insights into how compression affects individual frames within a chunk,
the experiment computes the Size per Frame. This metric is obtained by dividing the mean
video size for a chunk by the number of frames it contains. It provides a granular view of data
utilization within a chunk.

Finally, to gauge the efficiency of each compression setting, the experiment calculates the effi-
ciency metric. This is achieved by dividing the mean frame size by the size per frame within
a chunk. A higher efficiency value indicates that the compression setting optimally utilizes the
available data.

Following an extensive testing phase, here are the conclusive results.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 52

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Testing Context Results
W x H FS Min Max Mean NoF CF VS Min Max Mean SpF Eff

640 x 480 61.3-80.4 61.3 80.4 70.85

5 .h264 17.7-144 17.7 144 80.85 16.17 4.38
10 .h264 53.7-88 53.7 88 70.85 7.09 9.99
20 .h264 128.4-280 128.4 280 204.2 10.21 6.94
30 .h264 169-377 169 377 273 9.1 7.79
40 .h264 260-391 260 391 325.5 8.14 8.7
50 .h264 319.9-556 319.9 556 437.95 8.76 8.09
60 .h264 316.3-595.9 316.3 595.9 456.1 7.6 9.32
70 .h264 448.1-629.2 448.1 629.2 538.65 7.7 9.2
80 .h264 683.1-962.9 683.1 962.9 823 10.29 6.89
90 .h264 504-1000 504 1000 752 8.36 8.47
100 .h264 595-1100 595 1100 847.5 8.48 8.35
5 .h265 8.05-47.8 8.05 47.8 27.93 5.59 12.67
10 .h265 10.9-81.6 10.9 81.6 46.25 4.63 15.3
20 .h265 14.9-150 14.9 150 82.45 4.12 17.2
30 .h265 19.9-218 19.9 218 118.95 3.97 17.85
40 .h265 22.8-277 22.8 277 149.9 3.75 18.89
50 .h265 26.3-340 26.3 340 183.15 3.66 19.36
60 .h265 28.3-389 28.3 389 208.65 3.48 20.36
70 .h265 30.7-405 30.7 405 217.85 3.11 22.78
80 .h265 33.6-464 33.6 464 248.8 3.11 22.78
90 .h265 39-511 39 511 275 3.06 23.15
100 .h265 41.6-520 41.6 520 280.8 2.81 25.21

1280 x720 208-211 208 211 209.5

5 .h264 109-203 109 203 156 31.2 6.71
10 .h264 153.2-317.7 153.2 317.7 235.45 23.55 8.9
20 .h264 321-619 321 619 470 23.5 8.91
30 .h264 552.3-813 552.3 813 682.65 22.76 9.2
40 .h264 616.5-1000 616.5 1000 808.25 20.21 10.37
50 .h264 855.2-1200 855.2 1200 1027.6 20.55 10.19
60 .h264 1100-1400 1100 1400 1250 20.83 10.06
70 .h264 1200-1700 1200 1700 1450 20.71 10.12
80 .h264 1200-1900 1200 1900 1550 19.38 10.81
90 .h264 1300-2300 1300 2300 1800 20 10.48
100 .h264 1500-2600 1500 2600 2050 20.5 10.22
5 .h265 54.3-80.9 54.3 80.9 67.6 13.52 15.5
10 .h265 98.9-116 98.9 116 107.45 10.75 19.49
20 .h265 112-183 112 183 147.5 7.38 28.39
30 .h265 160-245 160 245 202.5 6.75 31.04
40 .h265 198-334 198 334 266 6.65 31.5
50 .h265 194-386 194 386 290 5.8 36.12
60 .h265 232-445 232 445 338.5 5.64 37.15
70 .h265 298-492 298 492 395 5.64 37.15
80 .h265 310-588 310 588 449 5.61 37.34
90 .h265 348-597 348 597 472.5 5.25 39.9
100 .h265 488-662 488 662 575 5.75 36.43
5 .h264 207-2090 207 2090 1148.5 229.7 7.84
10 .h264 2100-3600 2100 3600 2850 285 6.32

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 53

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

2560 x 1440 1700-1900 1700 1900 1800

20 .h264 4400-6800 4400 6800 5600 280 6.43
30 .h264 7400-10700 7400 10700 9050 301.67 5.97
40 .h264 11200-12300 11200 12300 11750 293.75 6.13
50 .h264 12700-17200 12700 17200 14950 299 6.02
60 .h264 17600-23200 17600 23200 20400 340 5.29
70 .h264 23500-28000 23500 28000 25750 367.86 4.89
80 .h264 29100-30600 29100 30600 29850 373.13 4.82
90 .h264 31200-36000 31200 36000 33600 373.33 4.82
100 .h264 36900-38400 36900 38400 37650 376.5 4.78
5 .h265 516-997 516 997 756.5 151.3 11.9
10 .h265 648-1250 648 1250 949 94.9 18.97
20 .h265 1350-2010 1350 2010 1680 84 21.43
30 .h265 2010-2720 2010 2720 2365 78.83 22.83
40 .h265 2740-3470 2740 3470 3105 77.63 23.19
50 .h265 3410-4290 3410 4290 3850 77 23.38
60 .h265 4200-4880 4200 4880 4540 75.67 23.79
70 .h265 4580-5750 4580 5750 5165 73.79 24.39
80 .h265 5290-6340 5290 6340 5815 72.69 24.76
90 .h265 6120-7030 6120 7030 6575 73.06 24.64
100 .h265 6770-7950 6770 7950 7360 73.6 24.46

Table 7: Compression type effectiveness across different video frame sizes

W x H = Width X Height (pixel), FS = Frame Size (KiB), NoF = Number of Frames,
CF = Compression Formats, VS = Video Size (KiB), SpF = Size per Frame (KiB), Eff = Efficiency

d) Experiment Results

The results of the experimentation regarding the .h264 and .h265 compression formats about var-
ious frame sizes provide valuable insights. Both compression formats exhibited a similar pattern:
as frame sizes increased, the efficiency of compression also increased. This suggests that larger
frames, which inherently contain more visual detail, benefit from more efficient compression.
Notably, both .h264 and .h265 experience a decline observed at the largest frame size setting,
with .h264 having a harsher fall. This decline in efficiency might be attributed to the limitations
of the .h264 codec when handling extremely large frames.

In contrast, the .h265 compression format demonstrated superior efficiency, as anticipated. .h265
is well-known for its ability to efficiently compress high-resolution content. However, it’s impor-
tant to note that .h265 compression typically demands more advanced hardware resources for
encoding and decoding due to its complexity.

Despite the advantages of .h265 compression, it appears that the Jetson Nano, the hardware
used in these tests, faced challenges in efficiently handling .h265 compression. The time required
for the Jetson Nano to compress .h265 video and subsequently transmit and stream it seems to
exceed acceptable limits. This could result in noticeable downtime or delays in the streaming
process.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 54

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Figure 23: Comparing between efficiency of different Video Compressions

7.6.3 Content Delivery Network

A Content Delivery Network emerges as a central player in modern video streaming architec-
tures. This network of strategically placed servers optimizes the delivery of content to end-users.
By selecting the server closest to a user’s geographical location, a CDN minimizes latency and
accelerates content retrieval. This not only enhances the user experience but also ensures scal-
ability and load balancing across the network, reducing the burden on the primary streaming
server.

As alluded to previously, Apache Kafka will not only enable users to communicate with the edge
device but also serve as a video chunk delivery system from the Jetson Nano to the CDN. The
compressed video chunks are efficiently transported using the Apache Kafka messaging system.
Apache Kafka excels in managing data streams, offering high throughput and fault tolerance. It
ensures that the compressed chunks are reliably delivered to the intended recipients, minimizing
data loss and ensuring seamless playback.

The compressing and streaming of the video chunks are handled by FFmpeg. FFmpeg excels
in addressing the intricate challenges of multimedia compression. It is the go-to solution for
converting collections of images, or frames, into compressed videos. This process is crucial for
reducing file sizes while preserving visual quality, making it ideal for applications like video
storage and transmission.

In the context of streaming, FFmpeg shines as an adaptive bitrate streaming solution. This tech-
nology ensures that viewers receive the best possible quality based on their internet connection.
FFmpeg dynamically adjusts the video quality by encoding video content at multiple bitrates
and resolutions, allowing seamless transitions between different qualities as network conditions
fluctuate. This ensures a smooth streaming experience, preventing buffering issues and providing
a superior viewing experience for a global audience.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 55

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Beyond video compression and adaptive streaming, FFmpeg’s streaming capabilities are unparal-
leled. It supports various streaming protocols, including Real-Time Messaging Protocol (RTMP)
and HTTP Live Streaming (HLS). These protocols enable the efficient delivery of video content
to a wide range of devices and platforms, making FFmpeg a go-to choice for broadcasters, content
creators, and live streamers.

Within the CDN architecture, a specialized receiver is configured to capture incoming Kafka
messages seamlessly. These messages encapsulate the compressed video chunks, ready for further
processing and distribution. Subsequently, the CDN orchestrates the efficient streaming of these
video chunks to the dedicated Streaming Server. This harmonious flow of data ensures the
smooth and uninterrupted journey of video content from its source to the awaiting audience.

7.6.4 Streaming Server and Adaptive Streaming

Figure 24: An open-source robust web server - NGINX

The Streaming Server is set up using NGINX, a robust and versatile web server. Its efficient and
scalable architecture makes it an ideal choice for delivering multimedia content over the Internet.
This dynamic duo orchestrates a seamless and efficient video streaming experience.

NGINX serves as the cornerstone of the Streaming Server setup. Its primary responsibility is to
act as the endpoint for the incoming video chunks, diligently received from the CDN. These video
chunks, previously compressed by FFmpeg, are handed over to NGINX for further processing and
dissemination. Here, NGINX ensures that the video stream is properly structured, authenticated,
and made available to users.

NGINX is set to stream the video footage to an RTMP channel. While the traditional RTMP
serves as a standard method for delivering streams, its compatibility with modern browsers is
limited. To overcome this challenge, streams are further adapted using the HLS protocol. This
protocol divides the video into smaller segments and dynamically adjusts the quality based on
the user’s network conditions.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 56

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

8 Proposed systems

With all the prerequisites established, this section is concerned with the architecture of the
system with its evolution throughout different versions.

8.1 Version 0.1

Figure 25: System Workflow V0.1a

At the core of the system is the implementation of YOLOv8 to work with the Jetson Nano
architecture. Adapting YOLOv8 to the Jetson Nano involves optimizing the model to make the
best use of the device’s CPU and GPU resources. This ensures that real-time object detection
remains feasible without overwhelming the hardware.

YOLOv8 will take a camera feed as an input for detection. It does not have to be a physical
camera connecting the Jetson Nano, as other streaming sources like RTSP also work. This
flexibility allows the system to seamlessly integrate with a wide range of cameras and streaming
devices, making it adaptable to different surveillance and monitoring setups.

With YOLOv8 running real-time detections, a script is built using the fundamentals of YOLO
and Supervision as mentioned in previous parts to log the important information. Even so, this
is just the Artificial Intelligence part of the AIoT. To call this an AIoT system, an IoT database
has to be introduced, as seen in Figure 26.

Figure 26: System Workflow V0.1b

This marks the first official version of the product, representing a significant milestone in its
development. It introduces Fluentd as a crucial component of the system, responsible for moni-
toring and transmitting the logged information to the designated IoT database. Once the data
reaches the IoT database, it undergoes a comprehensive analysis, compilation, and presentation
process.

One of the standout features of this version is the ability to present the analyzed data to users
through a variety of intuitive graphical elements. These include line graphs that provide visual

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 57

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

insights into trends and patterns, as well as raw tables for detailed data exploration. Additionally,
the system incorporates interactive elements such as buttons, switches, and knobs, each with
customizable conditions for execution.

8.2 Version 0.2

Figure 27: System Workflow V0.2a

Starting from this version, the project undergoes a strategic shift in focus, prioritizing the efficient
delivery of data to users. While the core functionality remains centered around AIoT, the
emphasis now lies on enabling users to access live detections and offering them the ability to
interact with YOLO’s settings on the Jetson Nano. This evolution led to the introduction of a
surveillance and monitoring system in V0.2a.

In this particular version, a key modification involves altering the Python script’s processing
logic. The script is now configured to stream every post-processed frame to a local machine.
This adjustment marks a significant enhancement in the system’s functionality. By streaming
each frame to a local device, users gain real-time access to the processed frames, enabling them
to monitor and analyze the data as it is generated.

Nevertheless, this adjustment introduced a limitation: only local devices could access and view
the processing. While this is acceptable for specific use cases, the aim is to create a versatile
system that accommodates a wide range of scenarios. Ideally, users should have the flexibility
to customize or scale back access as needed to suit their requirements.

To address this, the subsequent version of the system introduces streaming to a public IP server,
as seen in Figure 28.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 58

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Figure 28: System Workflow V0.2b

As elaborated in the previous sections, this particular version of the project utilized ImageZMQ
for transmitting frames to the Streaming Server. Subsequently, these frames were streamed
through the server’s public IP address. In doing so, the users can access the server from the
public IP to see the process in real-time.

However, a significant issue with this version is the strain it places on the Jetson Nano. Not
only does it have to process each frame, but it must also immediately send that frame to the
Streaming Server. This approach can lead to problems, especially in scenarios where the edge
device loses its internet connection. In such cases, the entire process stalls, and incoming frames
are not processed.

This limitation poses a significant challenge, as real-time processing and seamless data transmis-
sion are critical for the system’s effectiveness. It also poses major security issues. As such, the
version illustrated in Figure 29 breaks the scripts into more manageable segments and introduces
Streamlit.

Figure 29: System Workflow V0.2c

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 59

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

In this version, two new Python scripts, namely "sender" and "receiver," have been introduced,
separating them from their original scripts. To enable communication between the process and
stream components and the sender and receiver scripts, temporary folders have been created.
These folders are used to store processed frames and received frames, respectively.

This architectural improvement empowers the Jetson Nano to maintain its frame processing
capabilities even when it experiences interruptions in internet connectivity. The process script
operates autonomously, detecting, logging information, and storing frames in dedicated folders
during periods when internet access is unavailable. Once the internet connection is reestablished,
Fluentd and ImageZMQ can resume their operations.

To ensure that users receive real-time footage and are not subjected to delayed frame delivery, a
subsystem has been integrated. When the number of frames in the folder surpasses a predefined
threshold, the system automatically initiates frame management. Specifically, it deletes a desig-
nated number of frames to prioritize the delivery of the most up-to-date footage to users. This
mechanism guarantees a seamless viewing experience for users, even in scenarios with temporary
internet disruptions.

This architectural change enhances the modularity and flexibility of the system. By isolating
the sender and receiver functionalities into separate scripts and using temporary folders as in-
termediaries, the system gains more control and adaptability in managing data transmission.
Additionally, this approach helps streamline the data flow and ensures that frames are efficiently
processed and transmitted between the different components of the system.

In the project’s evolution, up to this stage, the Jetson Nano effectively communicates with the
Streaming Server, facilitating the distribution of data to users. However, this communication
remains unidirectional, allowing data to flow from the Jetson Nano to the Streaming Server
and subsequently to users. To establish a bidirectional communication channel, MQTT, utiliz-
ing Mosquitto as the broker, is introduced in the project’s next version. This pivotal addition
enhances the system’s capabilities, enabling both data transmission and reception between the
Jetson Nano and the Streaming Server, thus fostering more interactive and dynamic user expe-
riences.

Figure 30: System Workflow V0.2d

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 60

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

In this version, which serves as a bridge to a major architectural transition, the project maintains
a workflow similar to its predecessors. The notable addition is the implementation of an MQTT
broker. A Streamlit script for streaming video is crafted to provide users with enhanced control
over the system. Users can now manipulate settings such as confidence levels, IOU thresholds,
and select from a range of YOLO models, spanning from YOLOv5 to YOLOv8.

These user-selected options trigger messages sent to a specific topic on the MQTT broker. The
process script continuously monitors this topic, awaiting the latest messages dispatched by the
MQTT publisher. Upon receipt, these messages are translated into new settings for the Jetson
Nano. Users may experience a slight delay before observing the effects of their requested changes
in their video feeds. This setup establishes a dynamic and responsive interaction between users
and the AIoT system, enhancing the overall user experience.

At this juncture, the project encountered a pivotal challenge: scalability. The existing compo-
nents, namely ImageZMQ and the MQTT broker facilitated by Mosquitto, began to reveal their
limitations in accommodating the project’s expanding needs.

ImageZMQ, while proficient at its task of transporting image frames from the Jetson Nano to
the streaming server, exhibited constraints when dealing with a growing number of edge devices.
Each device is expected to send 3 streams of images at once to accommodate the users’ needs. As
more edge devices were added to the system, the load on ImageZMQ increased significantly. This
surge in demand strained the capabilities of ImageZMQ, causing delays and potential bottlenecks
in the frame delivery process.

Similarly, the MQTT broker, although effective for managing communication between the edge
devices and the Jetson Nano, demonstrated limitations in handling an extensive network of
devices. As the number of devices grew, the MQTT broker faced challenges in efficiently routing
messages, potentially resulting in congestion and delays in message delivery. This hindered the
seamless coordination of settings and commands between the users and the edge devices.

Concurrently, Streamlit, which had served adequately for visualizing and presenting complex
graphs, began to demonstrate shortcomings when tasked with the additional responsibilities of
receiving and streaming frames. This expanded functionality placed a considerable burden on
Streamlit, resulting in memory leaks and frequent crashes within the system.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 61

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

8.3 Version 0.3

Figure 31: System Workflow V0.3a

This version represents a significant departure from the project’s earlier iterations, marking a sub-
stantial shift in its architectural design. Here, Apache Kafka assumes a central role, superseding
its predecessors in facilitating communication between users and edge devices. Additionally, the
streaming protocol undergoes a substantial transformation, replacing ImageZMQ with Apache
Kafka as its core communication component.

The adoption of Apache Kafka in this version is pivotal, as it introduces a more robust and
scalable communication infrastructure. Kafka’s distributed and fault-tolerant architecture en-
hances the system’s capacity to handle large-scale data flows, ensuring the seamless transmission
of information between edge devices and users. This transition signifies a critical step towards
enhancing the project’s scalability and performance, addressing previous limitations associated
with ImageZMQ and MQTT.

Furthermore, the revamped streaming protocol, now reliant on Apache Kafka, marks a funda-
mental alteration in how video frames are managed and transmitted. This adaptation aims
to leverage Kafka’s capabilities in managing real-time data streams efficiently. By integrating
Apache Kafka into the streaming process, the project endeavors to provide a more reliable and
responsive video streaming experience, catering to the diverse needs of its users.

While Apache Kafka brings robustness to the system, the continuous transmission of raw frames
at a consistent rate of 30 frames per second per stream imposes considerable strain on the Kafka
infrastructure. To address this challenge and optimize data transmission, a novel approach is
introduced: the consolidation of frames into video chunks. This innovative strategy involves
compressing multiple frames into a single video chunk, offering significant bandwidth savings
and alleviating the burden on the Kafka ecosystem.

Additionally, the system incorporates a Streaming Server that is configured through NGINX to
receive the streamed content originating from a CDN. This architectural element plays a pivotal
role in the real-time content distribution process, ensuring that data is efficiently routed and
delivered to end-users.

The CDN streams content using FFmpeg to an RTMP stream hosted by NGINX. This stream
signal can be received using applications such as Open Broadcaster Software (OBS) or VideoLAN
Client (VLC). However, modern browsers have withdrawn their support for RTMP streams, so
an additional step needs to be taken.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 62

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Figure 32: System Workflow V0.3b

Version 0.3b introduces significant enhancements to the NGINX configuration, aimed at further
optimizing the project’s streaming capabilities. One of the key improvements is the integration
of HLS.

HTTP Live Streaming is a widely adopted streaming protocol developed by Apple. It breaks
multimedia content into small chunks and uses a manifest file (M3U8) to describe the available
streams and their quality levels. This addition allows for adaptive streaming, where the quality
of the stream can adapt in real time based on the viewer’s network conditions, ensuring a smooth
viewing experience.

Unlike RTMP, HLS is compatible with a wide range of devices and platforms, including iOS
and Android devices, web browsers, and smart TVs. This broad compatibility ensures that your
content can reach a diverse audience.

This latest iteration of the project marks a significant milestone in its ongoing development. Cur-
rently, a front-end web application is being developed, representing a forward-looking approach
to enhancing the user experience and expanding the project’s capabilities.

Figure 33: System Workflow V0.3 idea

The aim is to enhance the system’s scalability to accommodate a growing user base and expanding
network of edge devices. This involves ensuring that the infrastructure can seamlessly scale to
meet the rising demands for streaming content. Additionally, the introduction of a front-end
application allows for user credentialing and role assignment, reinforcing security and granting
access to specific edge devices as needed.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 63

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

9 Extension: Facial Recognition

While not initially within the scope of the original project, the system’s adaptability allows for
flexible modifications to cater to various requirements and evolving needs. An example of this is
to incorporate facial recognition into it.

9.1 Extension Context

The proposal to implement facial recognition for student attendance at VGU comes as a response
to the institution’s growth and the need for a more efficient and secure attendance-tracking
system. As the student population continues to expand, the traditional methods of taking
attendance have become increasingly time-consuming and susceptible to fraudulent practices.
This extension aims to leverage facial recognition technology to address these challenges and
streamline the attendance-checking process.

VGU, like many educational institutions, faces challenges associated with manually taking at-
tendance. These challenges include the need for instructors to individually mark each student’s
presence, which can be time-consuming, especially in larger classes. Or the method of passing
attendance papers can be cheated by having a friend sign them for you.

The introduction of facial recognition technology for attendance tracking, coupled with remote
monitoring capabilities, has the potential to revolutionize traditional attendance management
systems.

9.2 FaceNet

9.2.1 Overview

Face recognition technology has made remarkable strides in recent years, with FaceNet standing
as a pinnacle achievement in the field. Developed by researchers at Google, FaceNet is an
innovative deep-learning model designed for face recognition and verification tasks. It’s renowned
for its ability to create highly discriminative facial embeddings, allowing it to accurately identify
individuals in images and videos. This comprehensive overview delves into the workings and
significance of FaceNet in the realm of computer vision.

FaceNet’s groundbreaking achievement lies in its ability to transform facial images into a compact
yet highly informative vector representation known as an "embedding." These 128-dimensional
vectors are the essence of a person’s face, capturing the most critical facial features in a mathe-
matical form.

But why use the term "embedding"? The concept is borrowed from mathematics and machine
learning. An embedding is essentially a mapping that converts complex, high-dimensional data,
such as an image, into a simplified, lower-dimensional representation while retaining its essential
characteristics. In the case of FaceNet, it condenses a face image into a 128-number vector. This
transformation is akin to distilling the essence of a face into a concise set of numbers.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 64

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

9.2.2 Recognising Process

Figure 34: FaceNet images plotted in a 2D plain

FaceNet offers an efficient and effective means of recognizing individuals in unseen images. This
recognition process primarily relies on calculating embeddings, computing distances, and making
informed decisions based on these key components.

When presented with an unseen face in an image, FaceNet first calculates an embedding for this
face. This embedding is a vector of 128 numbers, capturing the essential facial features.

The system proceeds to compute the distances between the embedding of the unseen face and
the embeddings of known individuals. This involves calculating the similarity (or dissimilarity)
between the vectors.

The recognition outcome is based on the closest match (i.e., the reference embedding with the
smallest distance). If multiple known individuals meet the threshold, FaceNet can return multiple
potential matches or apply additional criteria to refine the decision.

9.2.3 Training Process

As for any facial recognition module, it needs to be trained and re-trained to add new faces to
be identified. The process of doing so can boiled down to a few simple steps.

FaceNet begins by randomly selecting an "anchor image" from the dataset. This serves as a
reference point in the learning process. To train FaceNet effectively, it then randomly selects
another image featuring the same person as the anchor image. This image forms what’s known as
a "positive example." In parallel, FaceNet randomly picks an image featuring a different person
from the anchor image. This image is termed a "negative example." Then, FaceNet’s neural
network is fine-tuned iteratively to optimize the embeddings’ quality. The objective is to ensure
that positive examples are closer to the anchor image in the embedding space than negative

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 65

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

(a) Init state before training (b) Final state after training

Figure 35: FaceNet Training Process

examples. The network parameters, the internal settings that govern how the neural network
operates, are adjusted during each iteration. This adjustment is guided by a loss function that
quantifies the similarity between the anchor, positive, and negative embeddings.

These steps are repeated iteratively, ensuring that changes continue until a specific criterion is
met. This criterion signifies that the embeddings of faces from the same person are indeed close
to each other while being distinctly separated from those of different individuals.

9.3 YOLO + FaceNet

9.3.1 Overview

In the context of FaceNet, the process of face recognition involves two critical components: face
detection and facial feature extraction using embeddings. While FaceNet excels at the latter, it
relies on a robust face detection system to identify and locate faces within images during both
the training and recognition phases. The YOLO algorithm plays a pivotal role in this process.

9.3.2 Detecting Faces

Leveraging the YOLOv8 algorithm, when specifically trained to focus solely on facial detection,
it collaborates seamlessly with FaceNet to facilitate accurate facial recognition.

YOLOv8 training for facial detection represents a strategic approach to optimizing the per-
formance of facial recognition systems. By narrowing the model’s focus to the detection of
individual faces, it helps achieve superior precision, efficiency, and adaptability across a range of
applications, ultimately leading to more reliable and accurate facial recognition outcomes.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 66

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

(a) World’s Largest Selfie (b) yolov8-face.pt

Figure 36: Running Face Detection on the World’s Largest Selfie

9.3.3 Usage in Training Phase

The training phase for face recognition involves a series of steps designed to prepare the system
for accurate and reliable identification of individuals. A vital component of this phase is the
integration of YOLO for face detection and a face alignment process.

The first step involves taking images of the individuals who need to be identified and organized
into folders, each named after the respective person’s name. This step creates a structured
dataset for training. Afterward, YOLO is employed as the face detection tool. YOLO’s primary
task is to analyze each image and identify the presence of faces. When a look is detected, YOLO
records the coordinates of the bounding box around the face.

Once YOLO has identified and located faces within the images, the next step involves face
alignment. Aligned faces are essentially images where the face is oriented consistently, making it
easier for subsequent recognition steps. YOLO saves the aligned faces separately in a designated
folder structure. This new folder structure maintains a similar organization to the original
dataset, with aligned faces grouped by the individual’s name.

Finally, FaceNet takes over the training phase to create a new classifier, which includes all faces
in the aligned faces folder, using the mentioned training process.

9.3.4 Usage in Recognition Phase

In recognition mode, the collaborative efforts of YOLO and FaceNet continue to shine, working
seamlessly to identify and verify faces within a given frame. YOLO takes the lead when a frame
or image is presented for face recognition. It scans the entire image to identify the presence
of faces. YOLO’s object detection capabilities excel in accurately locating objects within the
frame. YOLO not only identifies the presence of faces but also precisely outlines and locates the
boundaries of each detected face within the frame. This is critical for pinpointing the specific
face of interest, especially in scenarios where multiple faces may be present.

Once YOLO successfully detects and locates the relevant face within the frame, it passes this
cropped face region to FaceNet. YOLO essentially serves as the "scout" that identifies and

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 67

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

prepares the face for recognition. With the cropped face region in hand, FaceNet goes to work.
It calculates an embedding for the detected face, creating a unique numerical representation of
its features. This embedding is then compared to the embeddings of known individuals stored in
a database. If the calculated embedding for the detected face closely matches one of the stored
embeddings, FaceNet identifies the individual associated with that matching embedding. This
process results in the recognition of the person within the frame.

The YOLO-FaceNet integration allows for real-time face recognition. As frames or images are
processed, YOLO identifies and prepares the faces, and FaceNet verifies their identities swiftly
and accurately.

9.4 Implementation

Figure 37: Training Phase Implementation

This Python script serves the purpose of capturing multiple images in bulk, to collect 100 photos
for each individual. The process begins by prompting the user to input the name of the individual
whose images are to be captured. Subsequently, the captured photos are stored within a folder
named after the respective individual. Additionally, these individual folders are housed within

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 68

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

a parent directory labeled ’train’. The resulting directory structure closely resembles the visual
representation depicted in Figure 37.

Following the bulk image capture process, the next step involves the utilization of an alignment
script. This script leverages the capabilities of the YOLOv8 face detection model to precisely
crop and store the detected faces in a designated folder termed ’aligned_faces’. The primary
objective of this script is to identify and isolate the facial region that is most centrally positioned
within a given photograph. This approach effectively eliminates the potential scenario of multiple
faces being detected in a single image, which could otherwise introduce complexity and confusion
into the dataset. By focusing on the most prominent facial feature in each image, the alignment
script ensures that the dataset remains clean, coherent, and well-suited for subsequent tasks such
as facial recognition or analysis.

In the last phase of the process, the next critical step is to train the dataset that has been
meticulously curated. This training process is accomplished by harnessing a pre-trained FaceNet
module, coupled with the utilization of ’facenet.py’ and ’classifier.py’. These tools work cohe-
sively to generate a ’classifier.pkl’ file, which holds paramount significance in the subsequent
facial recognition operations.

The ’classifier.pkl’ file essentially serves as the cornerstone of the facial recognition process.
Whenever a new face is introduced into the recognition system, this file is responsible for ensuring
its accurate identification. To facilitate this seamless integration, the ’classifier.pkl’ file must
overwrite any outdated versions. However, there are specific scenarios, such as when attendance
checks are carried out for particular classes or groups, where the current ’classifier.pkl’ file may
not need to be modified or overwritten. In these cases, a modification of the code is needed.

Figure 38: Recognition Phase Implementation

During the Recognition Phase, a Python script optimized for facial recognition is employed,
utilizing the latest iteration of the ’classifier.pkl’ file in conjunction with the ’facenet.py’ script.
The primary objective at this stage is to locate faces within a single frame extracted from the
camera feed. YOLOv8 plays a pivotal role in this task, utilizing its capabilities to pinpoint the
presence of faces within the frame. In cases where faces are detected near the periphery of the
frame, a notification is triggered, prompting individuals to adjust their position and move closer
to the frame’s center. This adjustment is essential to ensure the effectiveness of the subsequent
recognition process. On the other hand, in cases where more than one face is detected, the script

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 69

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

will prioritize the one nearest the center of the frame.

(a) YOLOv8 face detection (b) FaceNet identification

Figure 39: Face Detection and Recognition process

The coordinates of the bounding boxes encompassing the detected face are then transmitted to
the subsequent phase, where FaceNet assumes control. In essence, YOLOv8 acts as the locator,
indicating the precise location of a face, while FaceNet takes on the responsibility of identifying
the individual. The outcome of these intricately coordinated processes can be observed either on
a monitor connected to the Jetson Nano or streamed through the Kafka ecosystem, as discussed
previously. This integration ensures a comprehensive and efficient facial recognition system,
capable of delivering real-time results and monitored from anywhere.

The development of an actual trigger function designed to log the attendance of present students
and subsequently transmit this information to an IoT database through Fluentd is currently
underway. However, owing to time constraints, the completion of this crucial component was
regrettably delayed and could not be finalized within the designated timeframe.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 70

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

10 Extension: License Plate Recognition

10.1 Extension Context

The versatile framework of the AIoT system offers a remarkable array of use cases, making it a
robust choice for various applications. One particularly noteworthy application, as highlighted
earlier, pertains to traffic monitoring, a domain with significant implications for safety, security,
and efficiency.

The integration of License Plate Recognition (LPR) into this AIoT ecosystem represents a logical
and powerful evolution of the system. By incorporating LPR capabilities, the AIoT system can
extend its functionality to include the automated recognition and analysis of license plates on
vehicles. This means that the system can efficiently capture, process, and interpret license plate
information from images or video streams. Such capabilities open doors to an array of innovative
applications, including tracking and identifying vehicles, managing parking lots, enhancing traffic
flow, and bolstering security through improved access control.

10.2 EasyOCR

Figure 40: License Plate Recognition using EasyOCR

EasyOCR is an open-source Python library designed to perform Optical Character Recognition
(OCR) tasks with ease. It is a powerful tool for extracting text and information from images,
making it an invaluable resource in various applications, including license plate recognition. In
this thesis, we will provide an overview of EasyOCR and explore its practical applications in the
context of license plate reading.

EasyOCR is built on deep learning techniques and is capable of recognizing text in multiple
languages with high accuracy. It stands out for its simplicity of use, offering a user-friendly

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 71

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

interface for developers to integrate OCR capabilities into their projects rapidly. This library
provides a pre-trained model that can detect and extract text from images, including complex
scenes with various fonts, sizes, and orientations.

Figure 41: Example of errors when using EasyOCR

In the initial phases of integrating EasyOCR into the system, the performance results, par-
ticularly when dealing with security webcam-quality images, have exhibited a mixed range of
outcomes. At its best, the system manages to provide somewhat satisfactory results, deciphering
text with an acceptable level of accuracy. However, at its worst, the accuracy of EasyOCR tends
to drop significantly, rendering the captured text unreadable or entirely inaccurate.

This variance in performance can be attributed to several factors, including the quality of the
input images, lighting conditions, and the inherent challenges posed by surveillance cameras.
Security webcams often produce images that may be characterized by low resolution, suboptimal
lighting, motion blur, and various other artifacts. These conditions present a formidable obstacle
for any OCR system, including EasyOCR, as it attempts to extract meaningful information from
such images.

So in the implementation section, a workaround is proposed.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 72

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

10.3 Implementation

10.3.1 Isolated implementation

Figure 42: License Reader Implementation

This extension module plays a crucial role in the system by facilitating the extraction of vehicles
from each frame within the input camera feed. Leveraging the advanced tracking capabilities of
YOLOv8, this component efficiently identifies and tracks vehicles as they traverse through the
video frames. The tracking process yields valuable coordinates, which are subsequently employed
to isolate and extract individual vehicles from the footage.

Upon detection and tracking, each identified vehicle is precisely cropped and then systematically
organized within designated folders. These folders are structured based on the unique tracking_id
associated with each vehicle. The higher-level organizational framework entails the creation of a
central directory labeled ’vehicle.’ This directory, situated within the overarching ’result’ folder,
serves as the repository for the categorized vehicle subfolders.

In parallel with the vehicle data, the frames constituting the camera feed are also retained.
These frames are meticulously preserved within the ’frame’ directory, which is nested within the
’result’ folder. The collective folder arrangement, as depicted in Figure 42, provides a coherent
and accessible structure for storing and managing the data generated during the license plate
recognition process.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 73

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

Simultaneously, the system operates the ’r_plate2.py’ script in parallel. This script is designed
to autonomously navigate the ’vehicle’ folder, a repository housing the cropped images of vehicles
generated by the tracking module. Its primary objective is to perform license plate recognition
for each identified vehicle using a custom-trained YOLOv8 module, a specialized component
developed for this purpose.

The execution of this script serves a pivotal role in the system’s workflow. It not only enables the
precise identification of license plates but also establishes the crucial link between each license
plate and its corresponding vehicle. Upon successfully detecting license plates within the cropped
vehicle images, the system diligently organizes them into designated ID folders. These ID folders
are thoughtfully structured and stored within the ’plate’ directory, which is dynamically created
within the overarching ’result’ folder.

The ultimate phase of the process involves the utilization of EasyOCR or alternative OCR
libraries to decipher the content of each license plate frame. To streamline these operations,
these steps can be consolidated into a unified script and seamlessly reintegrated into the original
system architecture. The primary objective is to extract and log the license plate numbers,
subsequently forwarding this crucial data to the designated IoT database for comprehensive
record-keeping and analysis.

10.3.2 Propose implementation and Integration

Nevertheless, it’s worth addressing a noteworthy consideration arising from the performance
evaluation of EasyOCR when applied to security camera feeds. In certain scenarios, EasyOCR’s
performance has proven to be suboptimal, ranging from modest accuracy to outright unreadabil-
ity. To circumvent this limitation and ensure the reliability of license plate data, a pragmatic
workaround has been devised.

The workaround involves a strategic shift in data processing. Instead of relying on text extrac-
tion from license plate frames, the system encodes and transmits the actual license plate frames
themselves to the IoT database. This approach avoids potential inaccuracies or misinterpreta-
tions associated with text recognition. It also preserves the original visual data, ensuring that
license plate information remains intact.

By opting for this methodology, the system effectively future-proofs its data collection process.
This means that if the need arises for a more detailed or human-assisted analysis of license plate
information, the original visual frames can be readily accessed and reanalyzed. This approach
strikes a balance between real-time data processing and the preservation of high-quality, unal-
tered source data, bolstering the system’s overall performance and versatility within the AIoT
framework.

Another point of contention when it comes to LPR in Vietnam is the majority of vehicles are
motorbikes. The license plate of a motorbike is situated in the back of the vehicle, unlike cars,
which have one at each end of the vehicle. This makes reading the license plate of motorcycles
moving toward the camera impossible. This means a modification to the established system is

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 74

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

required, with each camera monitoring the traffic lane moving away from the camera. Or better
yet, the system is more suited for dashcam applications for LPR of traffic in front of an activated
vehicle, instead of the static security camera approach.

An additional challenge in implementing LPR in Vietnam arises from the predominant use of
motorbikes. Unlike cars, which typically feature license plates at both the front and rear of the
vehicle, motorbikes have a single license plate located at the rear. This distinctive configuration
poses a unique obstacle: when motorbikes are moving toward the camera, reading their license
plates becomes an insurmountable task due to the plates’ orientation.

To address this specific challenge and ensure the effectiveness of the LPR system in the Viet-
namese context, it’s imperative to consider necessary modifications to the established system.
One plausible adjustment involves configuring each camera to monitor the traffic lane moving
away from the camera. By focusing on the rear of the vehicles, where the license plates are
positioned, the system can reliably capture and decipher license plate information.

Alternatively, a more tailored approach can be adopted by repurposing the system for dashcam
applications. In this context, the system is ideally suited for real-time LPR of traffic situated
in front of an activated vehicle. By installing cameras within vehicles and directing their field
of view towards the road ahead, the system can adeptly recognize and log license plates from
approaching vehicles. This dynamic approach aligns with the inherent mobility of dashcams,
providing a versatile solution for on-the-go LPR tasks.

However, similar to Facial Recognition for Checking Attendance Extension, due to time con-
straints, these features were not researched further and implemented.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 75

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

11 Conclusion

In conclusion, this thesis has explored the evolution and adaptation of an AIoT system designed
for real-time monitoring and recognition tasks using the Jetson Nano. The system’s journey
reflects the dynamic nature of technology and its response to practical challenges and evolving
requirements. Through various iterations, the system has undergone significant enhancements,
each driven by a specific need or constraint.

The initial stages of the system’s development centered on leveraging the capabilities of the Jetson
Nano platform, where YOLOv8, a state-of-the-art object detection model, played a pivotal role.
This phase laid the foundation for real-time object detection and monitoring, providing the basis
for subsequent advancements.

As the project progresses, two noteworthy extensions are currently under active development,
with one of them undergoing testing at VGU. These extensions represent promising additions to
the AIoT system’s capabilities. While the system remains in its prototype stage and functions
as a working concept, its primary purpose is to demonstrate the utility and resilience of an AIoT
system.

Even in this early stage, the system’s architecture reveals substantial potential. It serves as a
testament to the versatility and adaptability of AIoT technology. Beyond its immediate applica-
tions, the architecture hints at a myriad of possibilities for future enhancements and refinements.

Looking ahead, once the thesis period concludes, the project is poised for further development
and refinement. The roadmap includes plans to transition from a prototype to a fully operational
system. An integral part of this journey involves integrating the system into an active factory
environment located in Dong Nai. This transition to real-world deployment presents a valuable
opportunity to validate the system’s effectiveness and robustness in an industrial setting.

Ultimately, the ongoing development and expansion of the AIoT system underscore its poten-
tial to offer tangible benefits across various industries. The commitment to improvement and
real-world integration underscores the project’s commitment to realizing the full spectrum of
possibilities that AIoT technology has to offer.

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 76

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

References

[1] Loc, C., Do, N. (2023, June 3). AI Camera system for monitoring the Thai Ha crossing
bridge, from https://video.vnexpress.net/tin-tuc/thoi-su/he-thong-camera-ai-bao

-ve-cau-vuot-thai-ha-4612816.html?_gl=1

[2] MyAloha (2023, August 14). SECURITY GATE SOLUTION USING CAMERA FACEID,
from https://myaloha.com.vn

and https://www.youtube.com/watch?v=60v3zolLi5s&ab_channel=MyAloha

[3] Vinpearl (2021, May 6). CHECK-IN BY FACIAL RECOGNITION TECHNOLOGY AT
VINPEARL, from https://vinpearl.com/en/check-in-by-facial-recognition-techn

ology-at-vinpearl

[4] NVIDIA (n.d.). NVIDIA Embedded Systems for Next-Gen Autonomous Machines.
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

[5] Enderle, R. (2022, January 18). Why NVIDIA Has Become a Leader in the AI Market.
Datamation, from https://www.datamation.com/artificial-intelligence/why-nvidi

a-leader-ai-market/

[6] Sharon, G. (2023, February 23). How Nvidia dominated AI — and plans to keep it that way
as generative AI explodes. VentureBeat, from https://venturebeat.com/ai/how-nvidi

a-dominated-ai-and-plans-to-keep-it-that-way-as-generative-ai-explodes/

[7] NVIDIA (n.d.). Jetson TK1 - eLinux.org. Elinux.org. Retrieved September 13, 2023,
from https://elinux.org/Jetson_TK1

[8] Dmitry, S. (2023, February 12). A Guide to the YOLO Family of Computer Vision Models.
Data Phoenix, from https://dataphoenix.info/a-guide-to-the-yolo-family-of-com

puter-vision-models/

[9] Ultralytics. (n.d.). Ultralytics. https://ultralytics.com

[10] thingsboard. (n.d.). What is ThingsBoard? ThingsBoard. Retrieved September 13, 2023,
from https://thingsboard.io/docs/getting-started-guides/what-is-thingsboard/

[11] Things.vn. (2020, October 31). Full IoT solution for Viet Nam - Things.vn,
from https://things.vn

[12] Aharon, N., Orfaig, R., & Bobrovsky, B.-Z. (2022). BoT-SORT: Robust Associations Multi-
Pedestrian Tracking. ArXiv:2206.14651 [Cs]. https://arxiv.org/abs/2206.14651

[13] Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., &
Wang, X. (2022). ByteTrack: Multi-Object Tracking by Associating Every Detection Box.
ArXiv:2110.06864 [Cs]. https://arxiv.org/abs/2110.06864

[14] Papers with Code - MOT17 Benchmark (Multi-Object Tracking). (n.d.). Paperswith-
code.com. Retrieved September 13, 2023, from https://paperswithcode.com/sota/mu

lti-object-tracking-on-mot17?p=bytetrack-multi-object-tracking-by-1

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 77

https://video.vnexpress.net/tin-tuc/thoi-su/he-thong-camera-ai-bao-ve-cau-vuot-thai-ha-4612816.html?_gl=1
https://video.vnexpress.net/tin-tuc/thoi-su/he-thong-camera-ai-bao-ve-cau-vuot-thai-ha-4612816.html?_gl=1
https://myaloha.com.vn
https://www.youtube.com/watch?v=60v3zolLi5s&ab_channel=MyAloha
https://vinpearl.com/en/check-in-by-facial-recognition-technology-at-vinpearl
https://vinpearl.com/en/check-in-by-facial-recognition-technology-at-vinpearl
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.datamation.com/artificial-intelligence/why-nvidia-leader-ai-market/
https://www.datamation.com/artificial-intelligence/why-nvidia-leader-ai-market/
https://venturebeat.com/ai/how-nvidia-dominated-ai-and-plans-to-keep-it-that-way-as-generative-ai-explodes/
https://venturebeat.com/ai/how-nvidia-dominated-ai-and-plans-to-keep-it-that-way-as-generative-ai-explodes/
https://elinux.org/Jetson_TK1
 https://dataphoenix.info/a-guide-to-the-yolo-family-of-computer-vision-models/
 https://dataphoenix.info/a-guide-to-the-yolo-family-of-computer-vision-models/
https://ultralytics.com
https://thingsboard.io/docs/getting-started-guides/what-is-thingsboard/
https://things.vn
https://arxiv.org/abs/2206.14651
https://arxiv.org/abs/2110.06864
https://paperswithcode.com/sota/multi-object-tracking-on-mot17?p=bytetrack-multi-object-tracking-by-1
https://paperswithcode.com/sota/multi-object-tracking-on-mot17?p=bytetrack-multi-object-tracking-by-1

Vietnamese - German University
Department of Computer Science and Engineer

Bui Nhien Loc - 15635

[15] Supervision. (n.d.). Supervision.roboflow.com. Retrieved September 13, 2023,
from https://roboflow.github.io/supervision/

[16] Project, F. (n.d.). Fluentd | Open Source Data Collector. Www.fluentd.org. Retrieved
September 13, 2023, from https://www.fluentd.org

[17] Bass, J. (2022, April 8). imageZMQ: Transporting OpenCV images. GitHub,
from https://github.com/jeffbass/imagezmq

[18] Streamlit. (n.d.). Streamlit - The fastest way to build and share data apps. Streamlit.io,
from https://streamlit.io

[19] MQTT. (n.d.). MQTT - The Standard for IoT Messaging Mqtt.org, from https://mqtt.org

[20] Eclipse Mosquitto. (2018, January 8). Eclipse Mosquitto. https://mosquitto.org

[21] Apache Kafka. (n.d.). Apache Kafka. https://kafka.apache.org

[22] YouTube (n.d.). YouTube Live Streaming API Overview. Google for Developers. Retrieved
September 13, 2023, from https://developers.google.com/youtube/v3/live/getting-s

tarted

[23] NGINX. (2018). NGINX | High-Performance Load Balancer, Web Server, & Reverse Proxy.
NGINX, from https://www.nginx.com

[24] Luka, D. (2019, November 15). Face Recognition with FaceNet and MTCNN. Arsfutura.com,
from https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/

[25] PyImageSearch. (2020, September 14). Getting started with EasyOCR for Optical Character
Recognition. PyImageSearch, from https://pyimagesearch.com/2020/09/14/getting-s

tarted-with-easyocr-for-optical-character-recognition/

Research and Implementation of Artificial Intelligence
into the Internet of Things using NVIDIA Jetson Nano

Page 78

https://roboflow.github.io/supervision/
https://www.fluentd.org
https://github.com/jeffbass/imagezmq
https://streamlit.io
https://mqtt.org
https://mosquitto.org
https://kafka.apache.org
https://developers.google.com/youtube/v3/live/getting-started
https://developers.google.com/youtube/v3/live/getting-started
https://www.nginx.com
https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/
https://pyimagesearch.com/2020/09/14/getting-started-with-easyocr-for-optical-character-recognition/
https://pyimagesearch.com/2020/09/14/getting-started-with-easyocr-for-optical-character-recognition/

	Introduction
	Idea evolution
	Proposal
	Thesis Structure
	Related works
	AIoT system to monitor traffic
	Security system using Facial Recognition
	Check-in by Facial Recognition

	NVIDIA Jetson
	What is the NVIDIA Jetson line?
	Overview
	Specifications and Statistics

	How to evaluate the AI performance of a machine
	Comparison: the pros and cons
	Why choose the Jetson Nano?

	You Only Look Once
	What is YOLO?
	Overview
	YOLO throughout the years

	How to evaluate the accuracy of object detection model?
	Comparing between two models
	Precision-Recall Curve
	Intersection over Union
	Calculating mAP

	Comparison of different YOLO models

	YOLO on the Jetson Nano
	Methodology
	Results
	Laptop CPU test
	Laptop GPU test
	Jetson Nano test

	Conclusion

	YOLOv8 tracking and logging
	Tracking
	Overview
	YOLOv8 built-in tracking function
	Conclusion

	Logging
	Overview
	Supervision
	Conclusion

	Internet of Things of AIoT
	Overview
	IoT platform choices
	Things Platform
	InfluxDB

	Conclusion

	Miscellaneous tools and accessorries
	Fluentd
	ImageZMQ
	Streamlit
	MQTT
	Apache Kafka
	Video transmitting and streaming
	Overview
	Theory and Testing
	Content Delivery Network
	Streaming Server and Adaptive Streaming

	Proposed systems
	Version 0.1
	Version 0.2
	Version 0.3

	Extension: Facial Recognition
	Extension Context
	FaceNet
	Overview
	Recognising Process
	Training Process

	YOLO + FaceNet
	Overview
	Detecting Faces
	Usage in Training Phase
	Usage in Recognition Phase

	Implementation

	Extension: License Plate Recognition
	Extension Context
	EasyOCR
	Implementation
	Isolated implementation
	Propose implementation and Integration

	Conclusion

